Enginius/Matlab

Gaussian Mixture Regression

해리s 2019. 10. 23. 17:38

최근에 Learning from demonstration with model-based Gaussian process, CORL, 2019 (Learning from demonstration with model-based Gaussian process) 를 읽다가 GMR에 급 관심이 생겨서 맷랩으로 한번 구현을 해봤다. Input과 output의 joint distribution을 GMM으로 모델링하고, prediction은 conditional Gaussian을 이용해서 하는 재밌는 방법이다. 

GMR 의 수식들

위의 수식이 GMR의 수식이다. 내가 참고한 논문에서는 $\hat{\Sigma}$를 적을 때, 괄호가 빠져있어서 조금 어려움이 있었는데, 모 논문들이 다 그렇지모. 여튼 위의 수식을 구현해보면 아래의 그림을 얻을 수 있다. 여기서 주의깊게 보고 싶었던 것은 이차원의 출력들 사이의 dependency가 어떻게 잡히나, 그리고 이를 통해서 extrapoloation이 얼마나 잘 되는지였는데, 나쁘지 않다. 

 

알고리즘은 대략적으로 아래와 같이 굴러간다. 

1. Input과 output을 한번에 GMM으로 모델링을 한다. 

2. X, Y, XY 파트에 대해서 mu와 var를 구한다. 

3. Prediction을 할 때는 conditional Gaussian distribution의 mu, var를 쓴다. 

 

여기서 중요한 부분은 step1의 GMM을 구하는 것인데, 데이터가 몇 개이든 상관이 없이, k개의 가우시안 분포의 mu, var를 쓸 수 밖에 없게된다. 이는 데이터의 사소한 디테일을 뭉개버리는 효과가 생긴다. 그래서 노이지한 경우에 좋은 결과가 나오 수 있으나, 사소한 디테일이 중요한 문제에는 적합하지 않다는 생각이 든다. 

 

여기에 추가로 든 생각은 모든 것이 linear하기 떄문에 생기는 한계가 분명하다. 

 

 

 GMR의 interpolation and extrapolation 결과
각 차원 별로 학습 데이터, regression 결과, 그리고 predictive variance

코드

 

1. main.m 

더보기

% Configuration

RECOLLECT = false;

mat_name = 'gmrgp_data.mat';

if exist(mat_name,'file') && (~RECOLLECT)

    l = load(mat_name);

    xs = l.xs;

else

    % Get 2D trajectories using mouse clicks

    fig = figure(1); hold on;

    rectangle('Position',[0 0 1 1],'Curvature',0.1)

    axis equal; axis([0,1,0,1]); grid on;

    title('Press [q] to stop.','FontSize',15,'FontName','Consolas');

    xs = [];

    while true

        % Get click position

        [x1,x2,BUTTON] = ginput(1);

        switch BUTTON

            case 1 % clicked

                xs = [xs; x1,x2]; % append

                plot(x1,x2,'bo');

                drawnow;

            case 113 % q

                break

            otherwise

        end

    end

    % Save

    save(mat_name,'xs');

    fprintf(2,'[%s] saved.\n',mat_name);

end

n = size(xs,1); % #data

fprintf('[%d] number of data collected.\n',n);

 

% Get GRP and interpolate the points

ts = linspace(0,1,n)';

hyp = [1,1,0.01];

sig2w = 1e-6;

n_test = 500; % number of data for gmr

t_test = linspace(0,1,n_test)';

lgrp = get_grp(ts,xs,t_test,ones(n,1),ones(n_test,1),...

    'kernel_levrq',hyp,sig2w,hyp,sig2w);

sampled_paths = sample_grp(lgrp,20); % sample

% plot_grp(lgrp,'n_sample',0);

X = t_test;

Y = lgrp.mu;

d_x = size(X,2); d_y = size(Y,2);

fprintf('[%d] number of training data for GMR.\n',size(X,1));

 

% Add some noise to Y

idx_fr = round(n_test*0.2);

idx_to = round(n_test*0.4);

Y(idx_fr:idx_to,:) = Y(idx_fr:idx_to,:) + 0.2*randn(size(Y(idx_fr:idx_to,:)));

 

% Plot points and trajectory

PLOT_INTERPOLATED = 0;

if PLOT_INTERPOLATED

    figure(); hold on;

    rectangle('Position',[0 0 1 1],'Curvature',0.1)

    axis equal; axis([0,1,0,1]); grid on;

    for i_idx = 1:length(sampled_paths)

        sampled_path = sampled_paths{i_idx};

        % plot(sampled_path(:,1),sampled_path(:,2),'k-','LineWidth',1);

    end

    plot(xs(:,1),xs(:,2),'bo','MarkerSize',20,'LineWidth',3); % training points

    plot(Y(:,1),Y(:,2),'b-','LineWidth',3); % interpoloated trajectory

end

 

% Train GMM

addpath('EmGm')

k = 10; % #mixtures

n_reset = 10;

z_list = cell(1,n_reset); model_list = cell(1,n_reset); liks = zeros(1,n_reset);

for r_idx = 1:n_reset

    rng(r_idx);

    [z,model,llh] = mixGaussEm([X,Y]',k,'VERBOSE',0); % train

    z_list{r_idx} = z; model_list{r_idx} = model;

    liks(r_idx) = llh(end);

end

[~,max_idx] = max(liks);

z = z_list{max_idx}; model = model_list{max_idx};

k = length(unique(z));

d = size(model.mu,1);

gmm.k = k;

eps_gmr_x = 1e-6;

eps_gmr_y = 1e-4;

for k_idx = 1:k

    gmm.pi{k_idx} = model.w(k_idx);

    gmm.mu_x{k_idx} = model.mu(1,k_idx);

    gmm.mu_y{k_idx} = model.mu(2:3,k_idx);

    gmm.sig_x{k_idx} = model.Sigma(1,1,k_idx) + eps_gmr_x*eye(d_x,d_x);

    gmm.sig_y{k_idx} = model.Sigma(2:3,2:3,k_idx) + eps_gmr_y*eye(d_y,d_y);

    gmm.sig_xy{k_idx} = model.Sigma(1,2:3,k_idx);

    gmm.sig_yx{k_idx} = model.Sigma(2:3,1,k_idx);

end

 

% Plot with output GMM information

PLOT_GMM_Y = false;

if PLOT_GMM_Y

    figure(); hold on;

    rectangle('Position',[0 0 1 1],'Curvature',0.1)

    colors = hsv(k);

    for k_idx = 1:k

        elpt = ellipsedata(gmm.sig_y{k_idx},gmm.mu_y{k_idx},100,[1]);

        plot(elpt(:,1:2:end),elpt(:,2:2:end),'-','Color',colors(k_idx,:),'LineWidth',2);

    end

    plot(xs(:,1),xs(:,2),'ko','MarkerSize',20,'LineWidth',3); % training points

    plot(Y(:,1),Y(:,2),'k-','LineWidth',3); % interpoloated trajectory

    axis equal; axis([0,1,0,1]); grid on;

end

 

% First, run Gaussian mixture regression

n_interp = 100;

x_interp = linspace(0.0,1.0,n_interp);

y_gmr_interp = zeros(n_interp,2);

sig_gmr_interp = cell(n_interp,1);

for i_idx = 1:n_interp

    gmr = get_gmr(x_interp(i_idx),gmm);

    y_gmr_interp(i_idx,:) = gmr.yhat_M';

    sig_gmr_interp{i_idx} = gmr.sighat_M;

end

% Extrapolate on both directions

extrap_rate = 0.2;

n_extrap = round(n_interp*extrap_rate*2);

x_extrap1 = linspace(-extrap_rate,0.0,n_extrap);

y_gmr_extrap1 = zeros(n_extrap,2);

sig_gmr_extrap1 = cell(n_extrap,1);

for i_idx = 1:n_extrap

    gmr = get_gmr(x_extrap1(i_idx),gmm);

    y_gmr_extrap1(i_idx,:) = gmr.yhat_M';

    sig_gmr_extrap1{i_idx} = gmr.sighat_M;

end

x_extrap2 = linspace(1.0,1.0+extrap_rate,n_extrap);

y_gmr_extrap2 = zeros(n_extrap,2);

sig_gmr_extrap2 = cell(n_extrap,1);

for i_idx = 1:n_extrap

    gmr = get_gmr(x_extrap2(i_idx),gmm);

    y_gmr_extrap2(i_idx,:) = gmr.yhat_M';

    sig_gmr_extrap2{i_idx} = gmr.sighat_M;

end

 

% Plot GMR results

fig = figure(); set_fig_size(fig,[0.1,0.5,0.3,0.4]);

hold on;

colors = hsv(k);

PLOT_GMR_ELPT = true;

if PLOT_GMR_ELPT

    for i_idx = 1:1:n_interp

        y = y_gmr_interp(i_idx,:);

        sig = sig_gmr_interp{i_idx};

        elpt = ellipsedata(sig,y,100,[2]);

        % plot(elpt(:,1:2:end),elpt(:,2:2:end),'-','Color','k','LineWidth',1);

        patch(elpt(:,1:2:end),elpt(:,2:2:end),0,'FaceColor',[0.9,0.6,0.8],...

            'EdgeColor','none','FaceAlpha',1.0);

    end

    for i_idx = 1:1:n_extrap

        y = y_gmr_extrap1(i_idx,:);

        sig = sig_gmr_extrap1{i_idx};

        elpt1 = ellipsedata(sig,y,100,[2]);

        % plot(elpt1(:,1:2:end),elpt1(:,2:2:end),'--','Color','k','LineWidth',1);

        patch(elpt1(:,1:2:end),elpt1(:,2:2:end),0,'FaceColor',[0.5,0.8,1],...

            'EdgeColor','none','FaceAlpha',1.0);

        y = y_gmr_extrap2(i_idx,:);

        sig = sig_gmr_extrap2{i_idx};

        elpt2 = ellipsedata(sig,y,100,[2]);

        % plot(elpt2(:,1:2:end),elpt2(:,2:2:end),'--','Color','k','LineWidth',1);

        patch(elpt2(:,1:2:end),elpt2(:,2:2:end),0,'FaceColor',[0.5,0.8,1],...

            'EdgeColor','none','FaceAlpha',1.0);

    end

end

% rectangle('Position',[0 0 1 1],'Curvature',0.1,'LineWidth',3)

% plot(xs(:,1),xs(:,2),'ko','MarkerSize',13,'LineWidth',2); % training points

hdata = plot(Y(:,1),Y(:,2),'k.','LineWidth',1); % GMR output training data

hin = plot(y_gmr_interp(:,1),y_gmr_interp(:,2),'-',...

    'Color',[0.0,0.0,1.0],'LineWidth',3); % interpoloated trajectory

hex = plot(y_gmr_extrap1(:,1),y_gmr_extrap1(:,2),'--',...

    'Color',[1.0,0.1,0.1],'LineWidth',3); % extrapolated trajectory

plot(y_gmr_extrap2(:,1),y_gmr_extrap2(:,2),'--',...

    'Color',[1.0,0.1,0.1],'LineWidth',3); % extrapolated trajectory

PLOT_GMM = true;

if PLOT_GMM

    for k_idx = 1:k

        elpt = ellipsedata(gmm.sig_y{k_idx},gmm.mu_y{k_idx},100,[1,2]);

        % col = colors(k_idx,:);

        col = [0.2,0.9,0.5,0.8];

        plot(elpt(:,1:2:end),elpt(:,2:2:end),'-','Color',col,'LineWidth',2);

    end

end

legend([hdata,hin,hex],{'Data','GMR-innterpolated','GMR-extrapolated'},...

    'FontSize',15,'FontName','Consolas','Location','SouthEast');

axis equal; grid on;

set(gcf,'Color','w');

 

% Plot each dim separately

sig_vec = zeros(n_interp,2);

for i_idx = 1:n_interp

    sig = sig_gmr_interp{i_idx};

    sig_vec(i_idx,:) = sqrt([sig(1,1),sig(2,2)]);

end

fig = figure(); set_fig_size(fig,[0.1,0.1,0.3,0.4]);

xm = 0.1; ym = 0.1;

subaxes(fig,2,1,1,xm,ym); hold on; grid on;

h_fill = fill([x_interp';flipud(x_interp')],...

    [y_gmr_interp(:,1)-2*sig_vec(:,1);flipud(y_gmr_interp(:,1)+2*sig_vec(:,1))],...

    'y','LineStyle','none'); % grp 2std

set(h_fill,'FaceAlpha',0.3);

plot(X,Y(:,1),'kx');

plot(x_interp',y_gmr_interp(:,1),'b-','LineWidth',4);

subaxes(fig,2,1,2,xm,ym); hold on; grid on;

h_fill = fill([x_interp';flipud(x_interp')],...

    [y_gmr_interp(:,2)-2*sig_vec(:,2);flipud(y_gmr_interp(:,2)+2*sig_vec(:,2))],...

    'y','LineStyle','none'); % grp 2std

set(h_fill,'FaceAlpha',0.3);

hd = plot(X,Y(:,2),'kx');

hgmr = plot(x_interp',y_gmr_interp(:,2),'b-','LineWidth',4);

legend([hd,hgmr],{'Data','GMR-innterpolated'},...

    'FontSize',15,'FontName','Consolas','Location','SouthEast');

set(gcf,'Color','w');

 

2. get_gmr.m

더보기

function gmr = get_gmr(x_in,gmm)

 

% First compute h_l, yhat_l, sighat_l, sigtilde_l

yhat_k = cell(1,gmm.k);

sighat_k = cell(1,gmm.k);

h_k = cell(1,gmm.k);

sigtilde_k = cell(1,gmm.k);

eps_h_x = 1e-2; % some eps for computing h_k(x) <= hyper-parameter

h_den = 0;

for k_idx = 1:gmm.k

    h_den = h_den + gmm.pi{k_idx}*normpdf(x_in,gmm.mu_x{k_idx},eps_h_x+sqrt(gmm.sig_x{k_idx}));

end

for k_idx = 1:gmm.k

   yhat_k{k_idx} = gmm.mu_y{k_idx} + gmm.sig_yx{k_idx}/gmm.sig_x{k_idx}*(x_in-gmm.mu_x{k_idx});

   sighat_k{k_idx} = gmm.sig_y{k_idx} - gmm.sig_yx{k_idx}/gmm.sig_x{k_idx}*gmm.sig_xy{k_idx};

   sigtilde_k{k_idx} = sighat_k{k_idx} + yhat_k{k_idx}*yhat_k{k_idx}';

   h_k{k_idx} = gmm.pi{k_idx}*normpdf(x_in,gmm.mu_x{k_idx},eps_h_x+sqrt(gmm.sig_x{k_idx}))/h_den;

end

% Predice output

yhat_M = 0;

for k_idx = 1:gmm.k

    yhat_M = yhat_M + h_k{k_idx}*yhat_k{k_idx};

end

sighat_M = 0;

for k_idx = 1:gmm.k

    sighat_M = sighat_M + (h_k{k_idx}*(sigtilde_k{k_idx}-yhat_M*yhat_M'));

end

% Append

gmr.yhat_k = yhat_k;

gmr.sighat_k = sighat_k;

gmr.h_k = h_k;

gmr.sigtilde_k = sigtilde_k;

gmr.yhat_M = yhat_M;

gmr.sighat_M = sighat_M;

 

3. get_grp.m

더보기

function grp = get_grp(t_anchor,x_anchor,t_test,l_anchor,l_test,...

    kfun_str,hyp_mu,sig2w_mu,hyp_var,sig2w_var)

%

% Get Gaussian Random Path

%

 

t_anchor = reshape(t_anchor,[],1);

t_test = reshape(t_test,[],1);

 

n_anchor = size(t_anchor,1);

n_test = size(t_test,1);

xdim = size(x_anchor,2);

kfun = str2func(kfun_str);

 

% Make GRP mean zero

x_anchor_mu = mean(x_anchor);

x_anchor_mz = x_anchor - x_anchor_mu;

 

% Define GRP-mu kernel matrices

% l_anchor_mu = ones(size(l_anchor));

l_anchor_mu = l_anchor;

 

% l_test_mu = ones(size(l_test));

l_test_mu = l_test;

 

K_ta_mu = kfun(t_test,t_anchor,l_test_mu,l_anchor_mu,hyp_mu);

K_aa_mu = kfun(t_anchor,t_anchor,l_anchor_mu,l_anchor_mu,hyp_mu) ...

    + sig2w_mu*eye(n_anchor,n_anchor);

grp_mu = K_ta_mu/K_aa_mu*x_anchor_mz + x_anchor_mu;

 

% Define GRP-var kernel matrices

l_test_var = l_test;

K_ta_var = kfun(t_test,t_anchor,l_test_var,l_anchor,hyp_var);

K_aa_var = kfun(t_anchor,t_anchor,l_anchor,l_anchor,hyp_var) ...

    + sig2w_var*eye(n_anchor,n_anchor);

K_tt_var = kfun(t_test,t_test,l_test_var,l_test_var,hyp_var) + 1e-8*eye(n_test,n_test);

grp_var_mtx = K_tt_var - K_ta_var/K_aa_var*K_ta_var' + 1e-8*max(K_tt_var(:))*eye(n_test,n_test);

grp_var_mtx = 0.5*(grp_var_mtx+grp_var_mtx')/2;

grp_var = diag(grp_var_mtx);

grp_std = sqrt(max(0,grp_var));

 

% Save grp struct 

grp = struct('mu',grp_mu,'var',grp_var,'std',grp_std,...

    't_anchor',t_anchor,'x_anchor',x_anchor,'t_test',t_test,...

    'l_anchor',l_anchor,'l_test',l_test,...

    'n_anchor',n_anchor,'n_test',n_test,...

    'xdim',xdim,...

    'K_aa_mu',K_aa_mu,'K_ta_mu',K_ta_mu,...

    'K',grp_var_mtx,'x_anchor_mu',x_anchor_mu,...

    'kfun_str',kfun_str,'kfun',kfun,...

    'hyp_mu',hyp_mu,'sig2w_mu',sig2w_mu,...

    'hyp_var',hyp_var,'sig2w_var',sig2w_var);

 

4. kernel_levrq.m

더보기

function K = kernel_levrq(X1, X2, L1, L2, hyp)

%

% Rational Quadratic Kernel

%

n1 = size(X1, 1);

n2 = size(X2, 1);

d1 = size(X1, 2);

d2 = size(X2, 2);

if d1 ~= d2, fprintf(2, 'Data dimension missmatch! \n'); end

 

% Kernel hyperparameters

beta  = hyp(1);  % gain

gamma = hyp(2:end-1); % length parameters (the bigger, the smoother)

alpha = hyp(end); % RQ alpha (the bigger, the smoother)

 

% Make each leverave vector a column vector

L1 = reshape(L1,[],1);

L2 = reshape(L2,[],1);

 

% Compute the leveraged kernel matrix

x_dists = pdist2(X1./gamma, X2./gamma, 'euclidean').^2;

l_dists = pdist2(L1, L2, 'cityblock');

K = beta*(1+1/2/alpha*x_dists).^(-alpha) ...

    .*cos(pi/2*l_dists) ;

 

% Limit condition number

if n1 == n2 && n1 > 1 && 0

    sig = 1E-10;

    K = K + sig*eye(size(K));

end

 

5. ellipsedata.m

더보기

function elpt = ellipsedata(covmat,center,numpoints,sigmarule,varargin)

 

%% Ellipsedata V1.001

%

% Construct data points of ellipses representing contour curves of Gaussian

% distributions with any covariance and mean value.

%

%% Example

%

% In this example, the funcion ellipsedata constructs three ellipses of 100

% points each representing the contour curves corresponding to standard deviations

% of 1, 2 and 3 for a Gaussian distribution with covariance matrix given by

% [4,1;1,1] and mean value given by [3,3].

%

% elpt=ellipsedata([4,1;1,1],[3,3],100,[1,2,3]);

%

% The results can be plot as follows

%

% plot(elpt(:,1:2:end),elpt(:,2:2:end));

%

%% Input arguments

%

%   covmat:

%       Covariance matrix of a bivariate Gaussian distribution. Must be of

%       size 2x2, symmetric and positive definite. If the format is not

%       correct, an error is triggered. If the matrix is not symmetric, it

%       is symmetrized by adding its transpose and dividing by 2.

%

%   center:

%       The center (mean value) of the bivariate Gaussian distribution. If

%       the format is not correct, it is set to [0,0].

%

%   numpoints:

%       The number of points that each ellipse will be composed of. Must be

%       a positive integer number. If it is not numeric or positive, it is

%       set to 100. If it is not integer, it is converted to integer using

%       the function ceil.

%

%   sigmarule:

%       Vector of real numbers indicating the proportion of standard

%       deviation surrounded by each ellipse.

%

%   varargin (later assigned to "zeroprecision"):

%       A real number indicating the maximum difference after which two

%       numbers are considered different. This value is used for assessing

%       whether covmat is symmetric. If not specified, it is set to 1E-12

%

%% Output arguments

%

%   elpt:

%       Matrix in which each consecutive pair of columns represent an

%       ellipse corresponding to a different value of sigmarule, in the

%       order they were given in the input.

%

%% Version control

%

% V1.001: Changes are: (1) Previous version trigger an error if the matrix was not

% symmetric. In this version, if the matrix is not symmetric, it is

% symmetrized. (2) The last input argument is assigned to a variable called

% "zeroprecision" which controls the extent to which two numbers are

% considered different or equal. This value is used to assess whether

% covmat is symmetric or not.

%

%

%% Please, report any bugs to Hugo.Eyherabide@cs.helsinki.fi

%

% Copyright (c) 2014, Hugo Gabriel Eyherabide, Department of Mathematics

% and Statistics, Department of Computer Science and Helsinki Institute

% for Information Technology, University of Helsinki, Finland.

% All rights reserved.

% 

% Redistribution and use in source and binary forms, with or without 

% modification, are permitted provided that the following conditions 

% are met:

% 

% 1. Redistributions of source code must retain the above copyright 

% notice, this list of conditions and the following disclaimer.

% 

% 2. Redistributions in binary form must reproduce the above copyright 

% notice, this list of conditions and the following disclaimer in the 

% documentation and/or other materials provided with the distribution.

% 

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

% "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

% LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 

% FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

% HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

% TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 

% OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

% OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

% OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 

 

%% Check format of initial parameters

warningmessage=@(varname)warning(['Format of "' varname '" incorrect. Setting "' varname '" to default.']);

 

if isempty(varargin) || ~isnumeric(varargin{1}) || length(varargin{1})~=1,

    zeroprecision=1E-12;

else

    zeroprecision=varargin{1};

end

 

if zeroprecision<0, zeroprecision=-zeroprecision; end

 

if ~isnumeric(covmat) || size(covmat,1)~=size(covmat,2) || det(covmat)<0, 

    error('The argument "covmat" is not a covariance matrix');

end

 

if abs(covmat(1,2)-covmat(2,1))>zeroprecision,

    warning('The matrix "covmat" is not symmetric, and it has been symmetrized by adding its transpose and divided by 2');

    covmat=(covmat+covmat')/2;

end

 

if ~isnumeric(center) || length(center)~=2,

    warningmessage('center');

    center=[0;0];

end

 

if ~isnumeric(numpoints) || length(numpoints)~=1 || numpoints<1,

    warningmessage('numpoints');

    numpoints=100;

end

 

if ~isnumeric(sigmarule),

    warningmessage('sigmarule');

    sigmarule=3;

end

 

 

%% Calculations start here

 

% Converting input arguments into column vectors

center=center(:)';

sigmarule=sigmarule(:)';

numpoints=ceil(numpoints);

 

% Calculates principal directions(PD) and variances (PV)

[PD,PV]=eig(covmat);

PV=diag(PV).^.5;

 

% Chooses points

theta=linspace(0,2*pi,numpoints)';

 

% Construct ellipse

elpt=[cos(theta),sin(theta)]*diag(PV)*PD';

numsigma=length(sigmarule);

elpt=repmat(elpt,1,numsigma).*repmat(sigmarule(floor(1:.5:numsigma+.5)),numpoints,1);

elpt=elpt+repmat(center,numpoints,numsigma);

end

gmrgp_data.mat
0.00MB

+ GMM 패키지는 matlabcentral/fileexchange/26184-em-algorithm-for-gaussian-mixture-model-em-gmm 여기서 받으면 된다.