
Distributed Gibbs Sampling of Latent Topic
Models: The Gritty Details

THIS IS AN EARLY DRAFT. YOUR
FEEDBACKS ARE HIGHLY APPRECIATED.

Yi Wang
yi.wang.2005@gmail.com

August 2008

Contents

1 Preface 2

2 Latent Dirichlet Allocation 3
2.1 Introduction . 3
2.2 LDA and Its Learning Problem . 3
2.3 Dirichlet and Multinomial . 4
2.4 Learning LDA by Gibbs Sampling . 5
2.5 Experiments . 11
2.6 Acknowledgement . 11

3 Distributed Training of LDA 13
3.1 Introduction . 13
3.2 Scalable Training . 13
3.3 Scalable Model Selection . 14
3.4 Experiments Using Synthetic Data 15

1

Chapter 1

Preface

In 2003, Blei, Ng and Jordan [4] presented the Latent Dirichlet Allocation (LDA)
model and a Variational Expectation-Maximization algorithm for training the model.
In 2004, Griffiths and Steyvers [8] derived a Gibbs sampling algorithm for learning
LDA. Since then, Gibbs sampling was shown more efficient than other LDA training
algorithms including variational EM and Expectation-Propagation [11]. This effi-
ciency is due to a instrisic property of LDA – the conjugacy between the Dirichlet
prior the multinomial likelihood. For this reason, Gibbs sampling algorithms were
derived for inference in many models that extends LDA [15] [1] [5] [3] [10].

To further improve the efficiency of the Gibbs sampling algorithm for LDA,
researchers tried to distribute the computation on multiple computers [12] or to
optimize the Gibbs sampling speed on each computer [13].

Since November 2007, I started to work on developing distributed computing
solutions of topic models. Industrial solutions are often required to train models
using massive data sets, so I need to express training algorithms using modern
distributed computing models, in particular, MapReduce, BSP and MPI.

This document is my learning and working note. If you are interested with large
scale computing of latent topic models, I hope this document could be helpful in
the first stage of your work.

2

Chapter 2

Latent Dirichlet Allocation

2.1 Introduction

I started to write this chapter since November 2007, right after my first MapReduce
implementation of the AD-LDA algorithm[12]. I had worked so hard to understand
LDA, but cannot find any document that were comprehensive, complete, and contain
all necessary details. It is true that I can find some open source implementations of
LDA, for example, LDA Gibbs sampler in Java1 and GibbsLDA++2, but code does
not reveal math derivations. I read Griffiths’ paper [8] and technical report [7], but
realized most derivations are skipped. It was lucky to me that in the paper about
Topic-over-time[15], an extension of LDA, the authors show part of the derivation.
The derivation is helpful to understand LDA but is too short and not self-contained.
A primer [9] by Gregor Heinrich contains more details than documents mentioned
above. Indeed, most of my initial understanding on LDA comes from [9]. As [9]
focuses more on the Bayesian background of latent variable modeling, I wrote this
article focusing on more on the derivation of the Gibbs sampling algorithm for LDA.
You may notice that the Gibbs sampling updating rule we derived in (2.38) differs
slightly from what was presented in [7] and [9], but matches that in [15].

2.2 LDA and Its Learning Problem

In the literature, the training documents of LDA are often denoted by a long and
segmented vector W :

W =

{w1, . . . , wN1}, words in the 1st document

{wN1+1, . . . , wN1+N2}, words in the 2nd document

.
{w1+

∑D−1
j=1 Nj

, . . . , w∑D
j=1Nj

} words in the D-th document

 , (2.1)

where Nd denotes the number of words in the d-th document. 3

1http://arbylon.net/projects/LdaGibbsSampler.java
2http://gibbslda++.sourceforge.net
3Another representation of the training documents are two vectors: d and W :[

d
W

]
=

[
d1, . . . , dN
w1, . . . , wN

]
, (2.2)

where N =
∑D

j=1 Nj , di indices in D, wi indices in W, and the tuple [di, wi]
T denotes an edge

between the two vertices indexed by di and wi respectively. Such representation is comprehensive

3

http://arbylon.net/projects/LdaGibbsSampler.java
http://gibbslda++.sourceforge.net

In rest of this article, we consider hidden variables

Z =

{z1, . . . , zN1}, topics of words in the 1st document

{zN1+1, . . . , zN1+N2}, topics of words in the 2nd document

.
{z1+

∑D−1
j=1 Nj

, . . . , z∑D
j=1Nj

} topics of words in the D-th document

 , (2.3)

where each zi ∈ Z corresponds to a word wi ∈ W in (2.1).

2.3 Dirichlet and Multinomial

To derive the Gibbs sampling algorithm with LDA, it is important to be familiar
with the conjugacy between Dirichlet distribution and multinomial distribution.

The Dirichlet distribution is defined as:

Dir(p;α) =
1

B(α)

|α|∏
v=1

pαt−1
t , (2.4)

where the normalizing constant is the multinomial beta function, which can be
expressed in terms of gamma function:

B(α) =

∏|α|
i=1 Γ(αi)

Γ(
∑|α|

i=1 αi)
. (2.5)

When Dirichlet distribution is used in LDA to model the prior, αi’s are positive
integers. In this case, the gamma function degenerates to the factorial function:

Γ(n) = (n− 1)! (2.6)

The multinomial distribution is defined as:

Mult(x;p) =
n!∏K
i=1 xi!

K∏
i=1

pxii , (2.7)

where xi denotes the number of times that value i appears in the samples drawn
from the discrete distribution p, K = |x| = |p| = |α| and n =

∑K
i=1 xi. The

normalization constant comes from the product of combinatorial numbers.
We say the Dirichlet distribution is the conjugate distribution of the multinomial

distribution, because if the prior of p is Dir(p;α) and x is generated by Mult(x;p),
then the posterior distribution of p, p(p|x,α), is a Dirichlet distribution:

p(p|x,α) = Dir(p;x+α)

=
1

B(x+α)

|α|∏
v=1

pxt+αt−1
t .

(2.8)

and is used in many implementations of LDA, e.g, [14].
However, many papers (including this article) do not use this representation, because it misleads

readers to consider two sets of random variables, W and d. The fact is that d is the structure of
W and is highly dependent with W . d is also the structure of the hidden variables Z, as shown
by (2.3).

4

Figure 2.1: The procedure of learning LDA by Gibbs sampling.

Because (2.8) is a probability distribution function, integrating it over p should
result in 1:

1 =

∫
1

B(x+α)

|α|∏
v=1

pxt+αt−1
t dp

=
1

B(x+α)

∫ |α|∏
v=1

pxt+αt−1
t dp .

(2.9)

This implies ∫ |α|∏
v=1

pxt+αt−1
t dp = B(x+α) . (2.10)

This property will be used in the following derivations.

2.4 Learning LDA by Gibbs Sampling

There have been three strategies to learn LDA: EM with variational inference [4],
EM with expectation propagation [11], and Gibbs sampling [8]. In this article, we
focus on the Gibbs sampling method, whose performance is comparable with the
other two but is tolerant better to local optima.

Gibbs sampling is one of the class of samplings methods known as Markov Chain
Monte Carlo. We use it to sample from the posterior distribution, p(Z|W), given the
training data W represented in the form of (2.1). As will be shown by the following
text, given the sample of Z we can infer model parameters Φ and Θ. This forms a
learning algorithm with its general framework shown in Fig. 2.1.

In order to sample from p(Z|W) using the Gibbs sampling method, we need the
full conditional posterior distribution p(zi|Z¬i,W), where Z¬i denotes all zj’s with
j 6= i. In particular, Gibbs sampling does not require knowing the exact form of
p(zi|Z¬i,W); instead, it is enough to have a function f(·), where

f(zi|Z¬i,W) ∝ p(zi|Z¬i,W) (2.11)

The following mathematical derivation is for such a function f(·).

5

N the number of words in the corpus
1 ≤ i, j ≤ N index of words in the corpus
W = {wi} the corpus, and wi denotes a word
Z = {zi} latent topics assigned to words in W
W¬i = W \ wi the corpus excluding wi
Z¬i = Z \ zi latent topics excluding zi
K the number of topics specified as a parameter
V the number of unique words in the vocabulary
α the parameters of topic Dirichlet prior
β the parameters of word Dirichlet prior
Ωd,k count of words in d assigned topic k;

Ωd denotes the d-th row of matrix Ω.
Ψk,v count of word v in corpus assigned k

Ψk denotes the k-th row of matrxi Ψ.
Ω¬id,k like Ωd,k but excludes wi and zi
Ψ¬ik,v like Ψk,v but excludes wi and zi
Θ = {θd,k} θd,k = P (z = k|d), θd = P (z|d).
Φ = {φk,v} φk,v = P (w = v|z = k), φk = P (w|z = k).

Table 2.1: Symbols used in the derivation of LDA Gibbs sampling rule.

The Joint Distribution of LDA We start from deriving the joint distribution
4,

p(Z,W |α,β) = p(W |Z,β)p(Z|α) , (2.12)

which is the basis of the derivation of the Gibbs updating rule and the parameter
estimation rule. As p(W |Z,β) and p(Z|α) depend on Φ and Θ respectively, we
derive them separately.

According to the definition of LDA, we have

p(W |Z,β) =

∫
p(W |Z,Φ)p(Φ|β)dΦ , (2.13)

where p(Φ|β) has Dirichlet distribution:

p(Φ|β) =
K∏
k=1

p(φk|β) =
K∏
k=1

1

B(β)

V∏
v=1

φβv−1
k,v , (2.14)

and p(W |Z,Φ) has multinomial distribution:

p(W |Z,Φ) =
N∏
i=1

φzi,wi
=

K∏
k=1

V∏
v=1

φ
Ψk,v

k,v , (2.15)

where Ψ is a K × V count matrix and Ψk,v is the number of times that topic k is
assigned to word v. With W and Z defined by (2.1) and (2.3) respectively, we can
represent Ψk,v mathematically by

Ψk,v =
N∑
i=1

I{wi = v ∧ zi = k} , (2.16)

4Notations used in this article are identical with those used in [9].

6

where N is the corpus size in number of words. In later sections, we use Ψk to
denote the k-th row of the matrix Ψ.

Given (2.15) and (2.14), (2.13) becomes

p(W |Z,β) =

∫ K∏
k=1

1

B(β)

V∏
v=1

φ
Ψk,v+βv−1

k,v dφk . (2.17)

Using the property of integration of a product, which we learned in our colleague
time, ∫ K∏

k=1

fk(φk) dφ1 . . . dφK =
K∏
k=1

∫
fk(φk) dφk , (2.18)

we have

p(W |Z,β) =
K∏
k=1

(∫
1

B(β)

V∏
v=1

φ
Ψk,v+βv−1

k,v dφk

)

=
K∏
k=1

(
1

B(β)

∫ V∏
v=1

φ
Ψk,v+βv−1

k,v dφk

)
.

(2.19)

Using property (2.10), we can compute the integratation over φk in a close form, so

p(W |Z,β) =
K∏
k=1

B(Ψk + β)

B(β)
, (2.20)

where Ψk denotes the k-th row of matrix Ψ.
Now we derive p(Z|α) analogous to p(W |Z,β). Similar with (2.14), we have

p(Θ|α) =
D∏
d=1

p(θm|α) =
D∏
d=1

1

B(α)

K∏
k=1

θαk−1
d,k ; (2.21)

similar with (2.15), we have

p(Z|Θ) =
N∏
i=1

θdi,zi =
D∏
d=1

K∏
k=1

θ
Ωd,k

d,k ; (2.22)

and similar with (2.20) we have

p(Z|α) =

∫
p(Z|Θ)p(Θ|α)dΘ

=
D∏
d=1

(∫
1

B(α)

K∏
k=1

θ
Ωd,k+αk−1

d,k dθd

)

=
D∏
d=1

B(Ωd +α)

B(α)
,

(2.23)

where Ω is a count matrix and Ωd,k is the number of times that topic k is assigned
to words in document d; Ωd denotes the d-th row of Ω. With input data defined by
(2.2), Ωd,k can be represented mathematically

Ωd,k =
N∑
i=1

I{di = d ∧ zi = k} , (2.24)

7

where N is the corpus size by words. In later sections, we use Ωd to denote the d-th
row of the matrix Ω.

Given (2.20) and (2.23), the joint distribution (2.12) becomes:

p(Z,W |α,β) = p(W |Z,β)p(Z|α)

=
K∏
k=1

B(Ψk + β)

B(β)
·
D∏
d=1

B(Ωd +α)

B(α)

(2.25)

The Gibbs Updating Rule With (2.25), we can derive the Gibbs updating rule
for LDA:

p(zi = k|Z¬i,W,α,β) =
p(zi = k, Z¬i,W |α,β)

p(Z¬i,W |α,β)
. (2.26)

Because zi depends only on wi, (2.26) becomes

p(zi|Z¬i,W,α,β) ∝ p(Z,W |α,β)

p(Z¬i,W¬i|α,β)
where zi = k . (2.27)

The numerator in (2.27) is (2.25); whereas the denominator has a similar form:

p(Z¬i,W¬i|α,β) = p(W¬i|Z¬i,β)p(Z¬i|α)

=
K∏
k=1

B(Ψ¬ik + β)

B(β)
·
D∏
d=1

B(Ω¬id +α)

B(α)
,

(2.28)

where Ψ¬ik denotes the k-th row of the count K × V count matrix Ψ¬i, and Ψ¬ik,v
is the number of times that topic k is assigned to word w, but with the i-th word
and its topic assignment excluded. Similarly, Ω¬id is the d-th row of count matrix
Ω¬i, and Ω¬id,k is the number of words in document d that are assigned topic k, but
with the i-th word and its topic assignment excluded. In more details,

Ψ¬ik,v =
∑

1≤j≤N
j 6=i

I{wj = v ∧ zj = k} ,

Ω¬id,k =
∑

1≤j≤N
j 6=i

I{dj = d ∧ zj = k} ,
(2.29)

where dj denotes the document to which the i-th word in the corpus belongs. Some
properties can be derived from the definitions directly:

Ψk,v =

{
Ψ¬ik,v + 1 if v = wi and k = zi;

Ψ¬ik,v all other cases.

Ωd,k =

{
Ω¬id,k + 1 if d = di and k = zi;

Ω¬id,k all other cases.

(2.30)

From (2.30) we have

V∑
v=1

Ψzi,v = 1 +
V∑
v=1

Ψ¬izi,v

K∑
k=1

Ωdi,z = 1 +
K∑
k=1

Ω¬idi,z

(2.31)

8

Using (2.30) and (2.31), we can simplify (2.28):

p(zi = k|Z¬i,W,α,β) =
B(Ψk + β)

B(Ψ¬ik + β)
· B(Ωd +α)

B(Ω¬id +α)
. (2.32)

where d denotes the document that contains wi.
Further simplification can be achieved by substituting

B(x) =

∏dimx
k=1 Γ(xk)

Γ(
∑dimx

k=1 xk)
, (2.33)

and we have

p(zi = k|Z¬i,wi = v,W¬i,α,β) =∏V
v=1 Γ(Ψk,v+βt)

Γ(
∑V

v=1 Ψk,v+βt)∏V
v=1 Γ(Ψ¬ik,v+βt)

Γ(
∑V

v=1 Ψ¬ik,v+βt)

·

∏K
k=1 Γ(Ωd,k+αz)

Γ(
∑K

k=1 Ωd,k+αz)∏K
k=1 Γ(Ω¬id,k+αz)

Γ(
∑K

k=1 Ω¬id,k+αz)

. (2.34)

Using (2.30), we can remove most factors in the products of (2.34) and get

p(zi = k|Z¬i,wi = v,W¬i,α,β) =
Γ(Ψk,v+βwi)

Γ(
∑V

v=1 Ψk,v+βt)

Γ(Ψ¬ik,v+βwi)

Γ(
∑V

v=1 Ψ¬ik,v+βt)

·
Γ(Ωd,k+αk)

Γ(
∑K

k=1 Ωd,k+αz)

Γ(Ω¬id,k+αk)

Γ(
∑K

k=1 Ω¬id,k+αz)

. (2.35)

Here it is important to know that

Γ(y) = (y − 1)! if y is a positive integer , (2.36)

so we expand (2.35) and using (2.30) to remove most factors in the factorials. This
leads us to the Gibbs updating rule for LDA:

p(zi = k|Z¬i,w = v,W¬i,α,β) =

Ψk,v + βwi
− 1[∑V

v=1 Ψk,v + βt

]
− 1
· Ωd,k + αk − 1[∑K

k=1 Ωd,k + αz

]
− 1

. (2.37)

Note that the denominator of the second factor at the right hand side of (2.38)
does not depend on zi, the parameter of the function p(zi|Z¬i,W,α,β). Because
the Gibbs sampling method requires only a function f(zi) ∝ p(zi), c.f. (2.11), we
can use the following updating rule in practice:

p(zi = k|Z¬i,w = v,W¬i,α,β) =

Ψk,v + βwi
− 1[∑V

v=1 Ψk,v + βt

]
− 1
·
[
Ωd,k + αk − 1

]
. (2.38)

Parameter Estimation By the definition of φk,v and θd,k, we have

φk,v =
Ψk,v + βt(∑V

v′=1 Ψk,v′ + βv′
) ,

θm,k =
Ωd,k + αk(∑K
k=1 Ωd,k + αz

) .

(2.39)

9

zero all count variables NWZ, NZM, NZ ;
foreach document m ∈ [1, D] do

foreach word n ∈ [1, Nm] in document m do
sample topic index zm,n ∼ Mult(1/K) for word wm,n;
increment document-topic count: NZM[zm,n,m]++ ;
increment topic-term count: NWZ[wm,n, zm,n]++ ;
increment topic-term sum: NZ[zm,n]++ ;

end

end
while not finished do

foreach document m ∈ [1, D] do
foreach word n ∈ [1, Nm] in document m do

NWZ[wm,n, zm,n]--, NZ[zm,n]--, NZM[zm,n,m]-- ;
sample topic index z̃m,n according to (2.40) ;
NWZ[wm,n, z̃m,n]++, NZ[z̃m,n]++, NZM[z̃m,n,m]++ ;

end

end
if converged and L sampling iterations since last read out then

read out parameter set Θ and Φ according to (2.39) ;
end

end
Algorithm 1: The Gibbs sampling algorithm that learns LDA.

The Algorithm With (2.38), we can realize the learning procedure shown in
Fig. 2.1 using Algorithm. 1.

In this algorithm, we use a 2D array NWZ[w,z] to maintain Ψ and NZM[z,m] for
Ω. Also, to accelerate the computation, we use a 1D array NZ[z] to maintain n(z) =∑|W,

v=1 n(t; z). Note that we do not need an array NM[d] for n(z) =
∑|Z,

k=1 n(z, d).
Although it appears in (2.37), but it is not necessary in (2.38).

The input of this algorithm is not in the form of (2.1); instead, it is in a more
convenient form: with each document represented by a set of words it includes, the
input is given as a set of documents. Denote the n-th word in the m-th document by
wm,n, the corresponding topic is denoted by zm,n and corresponding document is m.
With these correspondence known, the above derivations can be easily implemented
in the algorithm.

The sampling operation in this algorithm is not identical with the full conditional
posterior distribution (2.38); instead, it does not contain those “−1” terms:

p(zi) =
Ψzi,wi

+ βwi[∑V
v=1 Ψk,v + βt

] · [Ωdi,zi + αzi
]
. (2.40)

This makes it elegant to maintain the consistency of sampling new topics and up-
dating the counts (NWZ, NZ and NZM) using three lines of code: decreasing the counts,
sampling and increasing the counts. 5

5This trick illustrates the physical meaning of those “−1” terms in (2.38). I learn this trick
from Heinrich’s code at http://arbylon.net/projects/LdaGibbsSampler.java.

10

http://arbylon.net/projects/LdaGibbsSampler.java

Figure 2.2: The ground-truth Φ used to synthesize our testing data.

2.5 Experiments

The synthetic image data mentioned in [8] is useful to test the correctness of any
implementation of LDA learning algorithm. To synthesize this data set, we fix
Φ = {φk}K=10

k=1 as visualized in Fig. 2.2 (also, Fig. 1 in [8]), set α = [1], the number
of words/pixels in each document/image d = 100. Because every image has 5 × 5
pixels, the vocabulary size is 25.6

Fig. 2.3 shows the result of running Gibbs sampling to learn an LDA from this
testing data set, where the left pane shows the convergence of the likelihood, and the
right pane shows the updating process of Φ along the iterations of the algorithm.
The 20 rows of images in the right pane are visualizations of Φ estimated at the
iterations of 1, 2, 3, 5, 7, , 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, , 200, 250, 300,
400, 499. From this figure we can see that since iteration 100, the estimated Φ is
almost identical to Fig. 1(a) of [8].

2.6 Acknowledgement

Thanks go to Gregor Heinrich and Xuerui Wang for their gentle explanation of some
math details.

6All these settings are identical with those described in [8].

11

Figure 2.3: The result of running the Gibbs sampling algorithm to learn an LDA
from synthetic data. Each row of 10 images in the right pane visualizes the Φ =
{φk}K=10

k=1 estimated at those iterations indicated by red circles in the left pane.

12

Chapter 3

Distributed Training of LDA

3.1 Introduction

Considering the generation process described by LDA, it is notable that, the doc-
uments are independent given the LDA model. This property makes it possible to
design a distributed Gibbs sampling algorithm for learning LDA [12]. Also, this
makes it possible to develop this algorithm using MapReduce.

3.2 Scalable Training

In order to support large-scale image annotation, we adopt a distributed Gibbs
sampling algorithm, AD-LDA, proposed in [12]. The basic idea is to divide the
training corpus into P parts, each part is saved on one computer. Each computer
executes one iteration of the Gibbs sampling algorithm [8] to update its local model
using its local data, and then the P local models are summed up to form the global
model, which is replicated to the P computers to support the next iteration.

Usually, the AD-LDA algorithm can be developed using the MPI programming
model, which is flexible and highly efficient, but does not support auto fault recovery
— as long as one computer fails during computation, all computers have to restart
their tasks. This is not a problem when we use tens of computers. But to support
real large-scale data like Web images, we need magnitudes more computers. During
the hours long training process, the probability that none of them fails is close
to 0. Without auto fault recovery, the training will restart again and again, and
statistically, never ends.

We solve this problem by modeling the AD-LDA algorithm by the MapReduce
programming model[6], which has been supporting most Web-scale computations in
Google c©. MapReduce takes input from a set of tuples and outputs tuples. A set of

data
channel

IdentityReducer

VectorSummingReducer

GibbsSamplingMapper

sharded by documents

sharded by words
as side−input to reducer

model channel

sharded by words

sharded by documents

W and Z

CTW updated CTWW and updated Z

Figure 3.1: The framework of MapReduce-LDA

13

tuples is usually distributed stored as subsets known as a “shards”. A MapReduce
computation job consists of three stages — mapping, shuffling and reducing. The
mapping and shuffling stages are programmable. To program the mapping stage,
users provide three functions Start(), Map() and Flush. For every shard, a thread
known as “map worker” is created to invoke Start once, and then Map() multiple
times for each tuple in the shard, and then Reduce() once. These functions can
output one or more key-value pairs, which are collected and aggregated by the
shuffling stage. Key-value pairs that come from various map workers but share the
same key are aggregated into a set known as a “reduce input”, and this common
key is assigned the key of the reduce input. Each reduce input will be processed by
an invocation of the Reduce function, which is provided by the user.

We model each iteration of AD-LDA by the following MapReduce job:

Start() loads the model updated by the previous iteration;

Map() updates topic assignments of words in a document using the model, and
records how the model should be updated according to the new topic assign-
ments;

Flush() outputs the recorded update opinion.

Note that both the model as its update opinion are V ×K sparse matrices, where
V is the number of unique words in the training corpus, and K is the number
of topics specified by the user. Flush() outputs each row of the update opinion
matrix with the key of the corresponding word1. So the shuffling stage aggregates
update opinion rows corresponding to a certain word and coming from various map
workers into a reduce input. So Reduce() sums the rows element-wise to get the
aggregated update opinion row for a word. The update opinion row should be added
to the corresponding row of the old model estimated by the previous iteration. In
a very restrictive MapReduce model, this has to be done in a separate MapReduce
job. However, most MapReduce implementations now support multiple types of
mappers. So rows of the old model can be loaded by an IdentityMapper and sent to
Reducer(). It is also notable that we need to save the updated topic assignments
for use in the next iteration. This can be done in Map(), because each document is
processed once in each iteration.

3.3 Scalable Model Selection

We have mentioned two parameters of the above training algorithm: the vocabulary
importance factor γ and the number of topics K. Values of these parameters can be
determined by cross-validation — given any pair of 〈γ,K〉, we train a two-vocabulary
LDA using part of data (known as “training data”) and then compute the perplexity
of the rest data (known as “testing data”) given the trained model [9]. The smaller
the perplexity value, the better that the model explains the data. To support large-
scale testing data, we model the computation of perplexity by MapReduce:

Start() loads the model;

1This document is based on Google MapReduce implementation. Another well known imple-
mentation of the MapReduce model is Hadoop (http://hadoop.apache.org), which does not
expose shard boundaries to programmers via Start() and Flush().

14

http://hadoop.apache.org

Figure 3.2: The ground-truth model parameters visualized as 12 512×512 images.

Figure 3.3: The model parameters estimated in the 281-th iteration.

Map() computes the log-likelihood L of the current document given the model,
and outputs a key-value pair, where key is a constant value, which makes all
outputs being packed into one reduce input; value is a pair 〈Ld, N(d)〉, where
N(d) is the length of document d;

Reduce() output perplexity perp = exp [
∑

d Ld/
∑

dN(d)].

3.4 Experiments Using Synthetic Data

15

Bibliography

[1] A. C.-E. Andrew McCallum and X. Wang. Topic and role discovery in social
networks. In IJCAI, 2005.

[2] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[3] D. Blei and J. McAuliffe. Supervised topic models. In NIPS, 2007.

[4] D. Blei, A. Ng, M. Jordan, and J. Lafferty. Latent dirichlet allocation. JMLR,
3:993–1022, 20003.

[5] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical
topic models and the nested chinese restaurant process. In NIPS, 2003.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, 2004.

[7] T. Griffith. Gibbs sampling in the generative model of latent dirichlet allocation.
Technical report, Stanford University, 2004.

[8] T. Griffiths and M. Steyvers. Finding scientific topics. In PNAS, volume 101,
pages 5228–5235, 2004.

[9] G. Heinrich. Parameter estimation for text analysis. Technical report, vsonix
GmbH and University of Leipzig, Germany, 2009.

[10] W. Li and A. McCallum. Pachinko allocation: Dag-structured mixture models
of topic correlations. In ICML, 2006.

[11] T. Minka and J. Lafferty. Expectation propaga-
tion for the generative aspect model. In UAI, 2002.
https://research.microsoft.com/ minka/papers/aspect/minka-aspect.pdf.

[12] D. Newman, A. Asuncion, P. Smyth, and MaxWelling. Distributed inference
for latent dirichlet allocation. In NIPS, 2007.

[13] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and M. Welling.
Fast collapsed gibbs sampling for latent dirichlet allocation. In KDD, 2008.

[14] M. Steyvers and T. Griffiths. Matlab topic modeling toolbox. Technical report,
University of California, Berkeley, 2007.

[15] X. Wang and A. McCallum. Topics over time: A non-markov continuous-time
model of topical trends. In KDD, 2006.

16

	Preface
	Latent Dirichlet Allocation
	Introduction
	LDA and Its Learning Problem
	Dirichlet and Multinomial
	Learning LDA by Gibbs Sampling
	Experiments
	Acknowledgement

	Distributed Training of LDA
	Introduction
	Scalable Training
	Scalable Model Selection
	Experiments Using Synthetic Data

