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1 Introduction

This report illustrates many technical details of the algorithm described
in ”Infinite Gaussian Mixture Model” by Carl E. Rasmussen, NIPS 2000.
Rasmussen’s paper provides the conditional posterior distributions of the
parameters in the mixture model, but lacks the details how to derive them.
Furthermore, his definition of Gamma distribution introduces lots of con-
fusions and his computation of Gamma posterior is doubtful. All these
problems make it difficult for others to implement his algorithm in Matlab.
The purpose of this report is to fill this gap. In the Appendix sections of
this report, I also illustrate the derivations of the posterior distributions of
a few standard distributions, such as Gaussian and Gamma, whose results
are used in this report.

Rasmussen starts the paper with the finite Gaussian mixture model and
then extend it to the case of infinite number of components. The focus of
this report is the finite case, which is described in Section 2.1 of his NIPS
paper.

The finite Gaussian mixture model (FGMM) with k clusters can be writ-
ten as:

p(y|µ1, ..., µk, s1, ..., sk, π1, ..., πk) =
k∑
j=1

πjN (µj , s−1
j ). (1.1)

where µj are the means and sj the precisions, i.e., inverse variances, πj
the mixture proportions. In Rasmussen’s paper and this report, only the
scalar observations are considered. The graphical presentation of FGMM
is in Figure 1. Besides the cluster parameters µj , sj and π, there are also
hyperparameters that control the priors of the cluster parameters, which are
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Figure 1: The graphical presentation of FGMM

common to all clusters. In addition, an indicator variable, ci, is introduced,
one for each observation, to represent the observation’s cluster membership,
taking on values between 1 to k. Taking both cluster parameters and hy-
perparameters into account, the parameter set of this model is

θ = {µ1, ..., µk, s1, ..., sk, π1, ..., πk, λ, r, β, w, α, c1, ..., cn}. (1.2)

To do Gibbs sampling, we need to derive the conditional posterior dis-
tributions for each parameters conditioned on all the other parameters,
p(θi|θ−i,y), where y = {yt}nt=1 is the set of n data points. But for a graph-
ical model, this conditional distribution is a function only of the nodes in
the Markov blanket. For the FGMM, a directed graphic model, the Markov
blanket includes the parents, the children, and the co-parents, as shown
in Figure 2. From this graphical representation, we can find the Markov
blanket for each parameter in the FGMM model, and then figure out their
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Figure 2: The Markov blanket of a directed graphic model. The picture is
due to wikipedia.

conditional posterior distributions to be derived:

p(µj |c,y, sj , λ, r), j = 1, ..., k (1.3)
p(λ|µ1, ..., µk, r) (1.4)
p(r|µ1, ..., µk, λ) (1.5)
p(sj |c,y, µj , β, w), j = 1, ..., k (1.6)
p(w|s1, ..., sk, β) (1.7)
p(β|s1, ..., sk, w) (1.8)
p(ci = j|c−i, π,y, µ, s), i, ..., n (1.9)
p(π|α, c) (1.10)
p(α|π) (1.11)

Note that µj ’s from different components are independent to each other
given the hyperparameters and the observations, and µj is related to only
the precision of the j-th clusters, and the . That is why there is no term such
as µ−j or s−j within the conditional variables in the conditional posterior
distributions of µj . This also applied to sj ’s. But ci’s are not independent to
each other. So there is a term c−i that represents all indicator excluding ci in
the within the conditional variables in the conditional posterior distributions
of ci.
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One of the most frequently used trick in the derivation is to apply the
Bayesian theorem:

posterior =
prior× likelihood

evidence
∝ prior× likelihood. (1.12)

As we can see, we need not do the integral in the denominator. For a
particular parameter, we first need to identify what are its observations and
derive the likelihood from these observations. Then we assume a conjugate
prior for this likelihood. Finally we multiply the likelihood and the prior to
get the posterior distribution. This procedure work well for all parameters
except ci. For ci, we need to consider the distribution conditioning on c−i.
Detailed discussion will be presented in the relevant section.

2 Conditional Posterior of µj, λ and r

The component means, µj , has a Gaussian prior:

µj |λ, r ∼ N (λ, r−1). (2.1)

we can get the µj ’s posterior by multiplying Equation (2.1) with Equation
(1.1). Note that only the j-th cluster is involved, so only one Gaussian
involved in the

∑
function in Equation (1.1). Thus the likelihood is in the

same form of Equation (A.1). We can apply the results in Equation (A.9)
to derive the conditional posterior of µj as:

p(µj |c,y, sj , λ, r) = N
(
rλ+ sj

∑
t:ct=j

yt

njsj + r
,

1
njsj + r

)
. (2.2)

The hyperparameter mean λ is common to all clusters. It is given a
vague conjugate Gaussian prior:

p(λ) ∼ N (µy, σ2
y). (2.3)

For λ, Equation 2.1 is its likelihood where the Gaussian precision r is known
and the k of µj , j = 1, ..., k are λ’s observations. Use the result in Equation
(A.9) again, we get λ’s conditional posterior distribution:

p(λ|µ1, ..., µk, r) = N

(
σ−2µy + r

∑k
j=1 µj

kr + σ−2
,

1
kr + σ−2

)
(2.4)
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GR(αR, βR) G(α, β) GM (αM , βM )

∝ xαR/2−1e
−αR
βR

x ∝ xα−1e−βx ∝ xαM−1e
− x
βM

Table 1: Comparison of three definitions of Gamma distributions.

The hyperparameter precision r is common to all clusters. It is given a
vague conjugate Gamma prior:

p(r) = GR(1, σ−2
y ) ∝ r−1/2exp(−rσ2

y/2). (2.5)

Notice that Rasmussen’s definition of Gamma distribution GR(·) is different
from the one we find on wikipedia (also used in this report, see Equation
(??)) or the one defined in Matlab. Let’s denote the definition of Ras-
mussen’s Gamma distribution, ours, and Matlab’s as GR(αR, βR), G(α, β)
and GM (αM , βM ) respectively. Their definitions are compared in Table 1
From Table 1, we can conclude the the relationships among their parame-
ters are:

α = αR/2 = αM , β = αR/βR = 1/βM . (2.6)

Thus the prior of r is equivalent to G(1/2, σ2
y/2) or GM (1/2, 2/σ2

y). The pos-
terior distribution of r can be obtained by applying the results in Equation
(A.23):

p(r|µ1, ..., µk, λ) = G

(
k + 1

2
,
σ2
y +

∑k
j=1(µj − λ)2

2

)
(2.7)

= GM

(
k + 1

2
,

2

σ2
y +

∑k
j=1(µj − λ)2

)
. (2.8)

3 Conditional Posterior of sj, β and w

The component precisions sj are given Gamma priors:

p(sj |β,w) = GR(β,w−1) ∝ sβ/2−1
j e−βwsj ⇒ p(sj |β,w) = G(β/2, βw). (3.1)

Similar to the case of µj , sj has nj observations yt with ct = j, and their
mean is µj . Thus we can apply the result in Equation (A.23) to derive the
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conditional posterior of sj :

p(sj |c,y, µj , β, w) = G

β + nj
2

, βw +
∑
t:ct=j

(yt − µj)2/2

 (3.2)

= GM

(
β + nj

2
,

1
βw +

∑
t:ct=j

(yt − µj)2/2

)
.(3.3)

w controls the rate parameter of the Gamma distribution of sj , which
is a hyperparameter common to all components. It has k observations,
sj , j = 1, ..., k. We can give it a conjugate Gamma prior:

p(w) = GR(1, σ2
y) ∝ w−1/2e−w/σ

2
y ⇒ p(w) = G(1/2, 1/σ2

y). (3.4)

To derive the posterior of w when we assume β known, we need to apply the
results in Equation (B.7). Note that in Equation (3.1), the rate parameter
is βw. So we need to transform the prior in Equation (3.4) to be a function
of βw. Use the following identity:

p(w) = G(a, b) ∝ wa−1e−bw ∝ (βw)a−1e
− b
β

(βw)
, (3.5)

we have p(βw) = G(1/2, 1
σ2
yβ

). Use the results in Equation (B.7), we have
the posterior of βw

p(βw|s1, ..., sk, β) = G

1 + kβ

2
,

1
βσ2

y

+
k∑
j=1

sj

 . (3.6)

With known β, it is trivial to obtain the sample of w after we sample βw
from Equation (3.6).

β is the shape parameter of the Gamma prior distribution of sj , which
is a hyperparameter common to all components. It has k observations,
sj , j = 1, ..., k. But we do not have a conjugate prior for this parameter.
Rasmussen gives it an inverse Gamma priors:

p(β−1) = IGR(1, 1)⇒ p(β) ∝ β−3/2e
− 1

2β ⇒ p(β) = IG(5/2, 1/2). (3.7)

To derive the posterior of β, we need to use the definition of Gamma
distribution in Equation (B.1). To avoid confusion, let’s temporarily use
α0 = 5/2, β0 = 1/2 as the parameter of β’s prior in Equation (3.7), and
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α̂ = β/2, β̂ = βw as the parameter of β’s likelihood in the first step of
derivation. Then, β’s posterior is:

p(β|s1, ..., sk, w) ∝ 1
βα0+1

e
−β0
β

k∏
j=1

(
β̂α̂

Γ(α̂)
sα̂−1
j e−β̂sj

)
(3.8)

=
1

β5/2+1
e
− 1/2

β

k∏
j=1

(
(βw)β/2

Γ(β/2)
s
β/2−1
j e−βwsj

)
(3.9)

=
exp(βw

∑k
j=1 sj −

1
2β )

Γ(β/2)k
β
kβ−7

2 (
k∏
j=1

wsj)β/2. (3.10)

This is not of standard form and can not use off-the-shelf Matlab routine
to generate samples therefrom. But it can be shown that log(β)|s1, ..., sk, w
is log-cancave, so we can generate samples from the distribution of log(β)
using Adaptive Rejection Sampling techniques and then transform them to
values of β.

4 Conditional Posterior of c and α

Generally, the conjugate prior of a multinomial distribution is a Dirichlet
distribution:

p(π1, ..., πk|α) = Dir(α1, ..., αk) =
Γ(
∑k

j=1 αj)∏k
j=1 Γ(αj)

k∏
j=1

π
αj
j dπj . (4.1)

For the symmetric Dirichlet distribution in this model,

p(π1, ..., πk|α) = Dir(α/k, ..., α/k) =
Γ(α)

Γ(α/k)k

k∏
j=1

π
α/k−1
j . (4.2)

Since
∫
p(π1, ..., πk|α)dπ1...dπk = 1, we have∫ k∏

j=1

π
αj
j dπj =

∏k
j=1 Γ(αj)

Γ(
∑k

j=1 αj)
. (4.3)

c1, ..., cn follow the multinomial distribution:

p(c1, ..., cn|π1, ..., πk) =
n∏
j=1

π
nj
j , (4.4)
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where nj is the number of points in the j Integrate out π1, ..., πk using the
result in Equation (4.2) and Equation (4.4), we get

p(c1, ..., cn, |α) =
Γ(α)

Γ(α/k)k

∫ k∏
j=1

π
nj+α/k−1
j dπj (4.5)

=
Γ(α)

Γ(α/k)k
/

Γ(α+ n)∏k
j=1 Γ(nj + α/k)k

(4.6)

=
Γ(α)

Γ(α+ n)

k∏
j=1

Γ(nj + α/k)
Γ(α/k)

(4.7)

where nj denote the number of points in the j-th cluster The conditional
distribution of c1, ..., cn is

p(ci = j|c−i, α) =
p(c|α)
p(c−i|α)

(4.8)

=
1

Γ(n+α)

1
Γ(n+α−1)

× Γ(nj + α/k)
Γ(nj,−i + α/k)

(4.9)

=
1

n+ α− 1
× nj,−i + α/k

1
(4.10)

=
nj,−i + α/k

n+ α− 1
(4.11)

where nj,−i denote the number of points in the j-th cluster excluding the
i-th point. Since we are considering the case ci = j, the terms in the product
of Equation(4.7) are all the same except the the j -th term, this leads to the
equality in Equation(4.9). Use the identity Γ(x + 1) = xΓ(x), we get the
equality in Equation(4.10).

The results through Equation (4.11) to (4.7) are essential to handle the
case of infinite number of clusters. If we can not integrate out π, we will
need to sample it. When we have infinite number of clusters, π will be
of infinite dimensions, making it difficult to sample. With the results in
Equation (4.11), we can work directly with the finite number of samples.

Equation (4.11) is the conditional prior for ci. Multiply it with the
likelihood in Equation (1.1), we can get its conditional posterior distribution:

p(ci = j|c−i, π,y, µ, s) = p(ci = j|c−i, α, yi, µj , sj) (4.12)
= p(ci = j|c−i, α)p(yi|µj , sj) (4.13)

∝ nj,−i + α/k

n+ α− 1
s

1/2
j exp(−sj(yi − µj)2/2)(4.14)
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A Derivation of Posterior Distribution of Gaus-
sian Distribution

For a univariate Gaussian distribution, N (µ, σ2), given n observation x =
{xi, i = 1, ..., n}, the likelihood is

L(x|µ, σ2) ∝ 1
(σ2)n

exp

(
−
∑n/2

i=1(xi − µ)2

2σ2

)
(A.1)

Its posterior distributions can be categorized into the following cases:

A.1 Known variance σ2 or known precision τ , unknown mean
µ

In this case, we assume a conjugate prior for the parameter µ, which is a
Gaussian distribution, µ ∼ N (µ0, σ

2
0). Since σ2 and σ2

0 are known, they are
considered as constant and factored out in the terms in front of the exp(·)
function. The posterior can then be written as:

p(µ|x, σ2, µ0, σ
2
0) ∝ exp

(
−
∑n

i=1(xi − µ)2

2σ2

)
× exp

(
−(µ− µ0)2

2σ2
0

)
. (A.2)

The only unknown parameter is µ, so the terms not involved in µ can be
factored out, and the posterior becomes:

p(µ|x, σ2, µ0, σ
2
0) ∝ exp

(
−µ

2

2

(
1
σ2

0

+
n

σ2

)
+ µ

(
µ0

σ2
0

+
∑n

i=1 xi
σ2

))
. (A.3)

Let

σ̃2 =
1
σ2

0

+
n

σ2
, (A.4)

µ̃ = σ̃2

(
µ0

σ2
0

+
∑n

i=1 xi
σ2

)
. (A.5)

The posterior becomes:

p(µ|x, σ2, µ0, σ
2
0) = exp

(
µ2

σ̃2
+

2µµ̃
2σ̃2

)
(A.6)

∝ exp
(
−(µ− µ̃)2

2σ̃2

)
. (A.7)
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Thus,

p(µ|x, σ2, µ0, σ
2
0) = N

 µ0

σ2
0

+
∑n
i=1 xi
σ2

1
σ2
0

+ n
σ2

,
1

1
σ2
0

+ n
σ2

 (A.8)

We can also use the precisions τ = 1
σ2 , τ0 = 1

σ2
0
, to replace the variances

in the above equations. The problem can be stated as: for a univariate
Gaussian with know precision τ , N (µ, τ), whose conjugate prior for the mean
µ is a Gaussian N (µ0, τ0), its posterior distribution given n observations
x = {xi, i = 1, ..., n} is also a Gaussian:

p(µ|x, τ, µ0, τ0) = N
(
τ0µ0 + τ

∑n
i=1 xi

nτ + τ0
,

1
nτ + τ0

)
. (A.9)

A.2 Known mean µ, unknown variance σ2 or unknown pre-
cision τ

In this case, the likelihood can be expressed as:

L(x|µ, σ2) ∝ 1
(σ2)n/2

exp
(
− nS

2σ2

)
(A.10)

where S = 1
n

∑n
i=1(xi − µ)2 is a constant.

we can assume a conjugate prior for σ2, which is an inverse Gamma
distribution

p(x|α, β) = IG(α, β) ∝ x−(α−1)e−β/x. (A.11)

The posterior becomes:

p(σ2|µ,x, α, β) ∝ 1
(σ2)α−1

exp(− β

σ2
)× 1

(σ2)n/2
exp

(
− nS

2σ2

)
(A.12)

=
1

(σ2)α−1+n/2
exp(−β + nS/2

σ2
). (A.13)

Thus,
p(σ2|µ,x, α, β) = IG(α− 1 + n/2, β + nS/2). (A.14)

We can also assume a conjugate scaled inverse-χ2 prior for σ2, which is
defined as

p(x|ν, σ2
0) = χ2

SI(ν, σ
2
0) ∝ x−(1+ν/2) exp

(
−νσ

2
0

2x

)
. (A.15)
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The posterior becomes

p(σ2|µ,x, ν, σ2
0) ∝ 1

(σ2)(1+ν/2)
exp

(
−νσ

2
0

2σ2

)
1

(σ2)n/2
exp

(
− nS

2σ2

)
(A.16)

=
1

(σ2)(1+(ν+n)/2)
exp

(
−νσ

2
0 + nS

2σ2

)
(A.17)

=
1

(σ2)(1+(ν+n)/2)
exp

−(ν + n)νσ
2
0+nS
ν+n

2σ2

 . (A.18)

Thus,

p(σ2|µ,x, ν, σ2
0) = χ2

SI(ν + n,
νσ2

0 + nS

ν + n
). (A.19)

If we use the precision τ to replace the variance σ2 as the parameter in
the Gaussian distribution, we can assume a conjugate prior for τ , which is
a Gamma distribution

p(x|α, β) = G(α, β) ∝ xα−1e−βx. (A.20)

The posterior becomes:

p(τ |µ,x, α, β) ∝ τα−1 exp(−βτ)× τn/2 exp(−nSτ/2) (A.21)
= τα−1+n/2 exp(−τ(β + nS/2)). (A.22)

Thus,
p(τ |µ,x, α, β) = G(α+ n/2, β + nS/2). (A.23)

B Derivation of Posterior Distribution of Gamma
Distribution

In this report, I use the definition of Gamma distribution as follows:

p(x|α, β) = G(α, β) =
βα

Γ(α)
xα−1e−βx, (B.1)

where α is called as a shape parameter and β a rate parameter.
Given n observations x = {xi, i = 1, ..., n}, the likelihood is:

p(x|α, β) =
βnα

Γ(α)n
(
n∏
i=1

xi)α−1e−β
∑n
i=1 xi . (B.2)

Its posterior distributions can be categorized into the following cases:
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B.1 Known shape parameter α, unknown rate parameter β

In this case, the likelihood can be simplified as:

p(x|α, β) = βnαe−β
∑n
i=1 xi . (B.3)

We can assume a conjugate prior for beta, which is a Gamma distribution:

p(β|α0, β0) = G(α0, β0) ∝ βα0−1e−β0β, (B.4)

The posterior distribution of beta can be obtained by multiplying Equa-
tion (B.3) with Equation (B.4):

p(β|x, α, α0, β0) ∝ βnαe−β
∑n
i=1 xi × βα0−1e−β0β (B.5)

= βα0+nα−1e−β(β0+
∑n
i=1 xi). (B.6)

Thus,

p(β|x, α, α0, β0) = G(α0 + nα, β0 +
n∑
i=1

xi). (B.7)
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