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1 Introduction

This technical report contains my notes on Teh’s technical report [3] and tuto-
rial [2], and Chapter 2 of Sudderth’s thesis [1]. Many figures are credited to Teh
and Sudderth. It focuses on the motivation and ideas on developing the Hier-
archical Dirichlet Process (HDP) mixture model, rather than the mathematical
correctness or rigorousness. Thus I try to explain the concepts and ideas in an
illustrative way to make it easy to understand, for myself, at least :).

2 Introducing HDP from the perspective of shar-
ing clusters among groups

A HDP mixture is built upon multiple DP mixtures, where each group has a
DP mixture. The goal of HDP is beyond the discovering of the clusters from
each single group, which is the task of DP mixture models. In many application
domains, we are more interested in the relationship among the clusters from
different groups. In these cases, we want to see how clusters are shared among
multiple DP mixtures. Typical applications of HDP include document model-
ing and topic discovery in natural language process domain, object and scene
modeling and recognition in computer vision domain, etc. Table 1 summarizes
the relationship among DP mixture model, HDP mixture model and their finite
counter parts.

Now consider how to share clusters among different groups. In the mixture
models, since clusters are represented by their parameters, sharing clusters is
then equivalent to sharing cluster parameters θk. Recall that the cluster pa-
rameters θk is drawn from a Dirichlet process in a DP mixture model. Can we
let these Dirichlet process, Gj , be generated from the common distribution G0

with common parameter α0 (Figure 1.a)? If G0 is a continuous distribution,
this idea will not work: each drawing of Gj from H will be distinctive, thus this
no way to force sharing θk among different Gj .
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DP mixture model HDP mixture model
tasks finding clusters in a

dataset
sharing clusters among multiple
groups

example appli-
cations

data clustering discovering topics in a document
corpus

finite model Finite mixture model Finite hierarchical mixture
model with Latent Dirichlet
Allocation as a special case

Table 1: Relationship among DP mixture model, HDP mixture model, Finite
mixture model and LDA

The solution is thus to force G0 to be a discrete function, then drawing of
Gj from G0 will have chances to share common θk’s. On the other hand, we do
not want to limit the number of clusters in our application for various reasons.
Thus a straight-forward solution is to let G0 be a Dirichlet process with its own
prior distribution (Figure 1.b). This leads to HDP mixture model:

G0|H ∼ DP (γ,H) (2.1)
Gj |G0 ∼ DP (α0, G0) (2.2)
φji|Gj ∼ Gj (2.3)
xji|φji ∼ F (φji) (2.4)

The graphical representation of HDP mixture model is illustrated in Figure
2. This figure also shows an example of HDP mixture model, which includes
shared, infinite 1-D Gaussian mixtures. All clusters have unit variances and
there is only one cluster parameter, i.e., θk is the cluster mean. H(λ) is a
conjugate, Gaussian prior on cluster means. G0 draws a global sample of θk,
with weight β, G1 and G2 reuse these samples but with different weights π1

and π2 respectively. For particular observation xji, a cluster parameter φji is
first drawn from Gj , then xji is drawn from N (φji, 1). In this example, φ11 and
φ22 take the same value of θ2, and shows the sharing of cluster parameters.

3 Introducing HDP from the perspective of ex-
plicit stick-breaking construction

Making G0 discrete forces sharing clusters between Gj , because atoms θk in all
Gj ’s are from G0 whereas different Gj has different weights on these atoms, as
illustrated in Figure 2. But how these weights are computed? This question
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(a) (b)

Figure 1: Two methods to extend DP mixture to deal with data of multiple
groups: (a) Generating Gj from a continuous H and (b) Generating Gj from a
discrete distribution G0, which is generated from a Dirichlet process H.

can be answered when we write out the explicit formulas of G0 and Gj :

G0(θ) =
∞∑
k=1

βkδ(θ, θk)

βk = β′k

k−1∏
`=1

(1− β′`) (3.1)

β′k ∼ Beta(1, γ)

Gj(θ) =
∞∑
k=1

πjkδ(θ, θk)

πjk = π′jk

k−1∏
`=1

(1− π′j`) (3.2)

π′jk ∼ Beta

(
α0βk, α0

(
1−

k∑
`=1

β`

))
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Figure 2: The graphic representations for the HDP mixture model in the Pólya
urn scheme, and an example of HDP mixture model. The example is adopted
from Sudderth’s thesis [1]. See Section 2 for detailed discussion of this example.

Explicitly representing G0 and Gj leads to the stick-breaking representation for
HDP mixture model.

β|γ ∼ GEM(γ)
πj |α0,β ∼ DP(α0,β)
zji|πj ∼ πj (3.3)
θk|H ∼ H

xji|zji, (θk)∞k=1 ∼ F (θzji).

Figure 3 illustrates the graphical representations of DP mixture model in stick-
breaking construction. Compared with the finite hierarchical mixture model, it
is easy to see that HDP is its infinite limit. This representation explicitly shows
the global cluster parameter θk in the graphical representation. Its influence
on observation xji is via the group-specified mixture weights πj . In the next
section, the representation based on Chinese restaurant franchise will directly
shows how the global clusters influences xji.

4



(a) (b)

Figure 3: The graphic representation of finite hierarchical mixture model (a)
and HDP mixture model (b) in stick-breaking construction.

4 Introducing HDP mixture model from the per-
spective of Chinese restaurant franchise metaphor

4.1 Chinese restaurant process

Chinese restaurant process is a metaphor to illustrate Dirichlet process. For a
set of random variables φ1, ..., φi distributed according to G ∼ DP(α0, G0), the
last φi has the following distribution conditioned on the previous variables:

φi|φ1, .., φi−1, α0, G0 ∼
K∑
k=1

nk
α0 + i− 1

δθk
+

α0

α0 + i− 1
G0. (4.1)

This distribution can be described in a Chinese restaurant process metaphor:

• Imagine a Chinese restaurant that has unlimited number of tables θk, k =
1, ...,∞.

• First customer sits at the first table.

• Suppose there are K tables occupied before the i-th customer comes.
When the i-th customer comes, he can sit at:

– Table k ≤ K with probability ∝ nk

α0+i−1 ,

– A new table K + 1 with probability ∝ α0
α0+n−1 .

In the first case, we set φi = θk; in the second case, we increase K to
K + 1, draw a new sample θK ∼ G0 and set φi = θK
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variables meaning metaphor
φi random variables φi|G ∼ G customer i
θk distinct values of φi in the given

data set, θk|α0, G0 ∼ G0

table k

nk the number of φi associated to θk the number of customers sitting
around table k

Table 2: Variables involved in the Chinese restaurant process

An example that illustrates the above process in Figure 4 can be used to under-
stand the meanings of the random variables, and the variables involved in this
process are summarized in Table 2. The Chinese restaurant process illustrate
the “cluster” property of the DP, i.e., the more customers sit at a table, the
higher chance a new customer will choose to sit at this table and most proba-
bly, and thus only a limited number of tables will be occupied although there are
unlimited number of tables in the restaurant. This property makes it feasible
for us to sample from a DP mixture.

Figure 4: An example illustrating the Chinese restaurant process. This figure
is adapted from Teh’s technical report [3].

4.2 Chinese restaurant franchise

The Chinese restaurant franchise is essentially a two-level Chinese restaurant
process:

• Within a restaurant, customers φji choose tables ψjt,

• Within all restaurants, tables ψjt choose dishes θk.

In both levels, the choosing follows the Chinese restaurant process as illustrated
is the previous subsection.

The random variables and their analogies in the Chinese restaurant franchise
metaphor are described in Table 3.

Formally, the Chinese restaurant franchise can be described as follows:

• Consider a Chinese restaurant franchise, whose J restaurants share a menu
with unbounded number of dishes, θk, k = 1, ...,∞.
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variables meaning metaphor
φji random variables φji|Gj ∼ Gj customer i in restaurant j
ψjt distinct values of φji in group j,

ψjt|α0, G0 ∼ G0

table t in restaurant j

tji index of ψjt associated to φji,
tji|π̃j ∼ π̃j

the table taken by customer
i in restaurant j, .i.e. ,
Table(φji)=ψjt

njt the number of φji associated to
ψjt in group j

the number of customers sitting
around table t in restaurant j

θk distinct values within all ψjt,
θk|H,λ ∼ H(λ)

dish k, which is shared within all
restaurants

kjt index of θk associated to ψjt,
kjt|β ∼ β

the dish ordered by table t in
restaurant j, i.e., Dish(ψjt) = kjt

mjk the number of ψjt associated to
θk in group j

the number of tables ordered
dish k in restaurant j

mk

∑
kmjk, i.e., the number of ψjt

associated to θk over all j
the total number of tables or-
dered dish k within all restau-
rants

Table 3: Variables involved in the Chinese restaurant franchise

• At each table of each restaurant, one dish is ordered from the public menu
by the first customer who sits there, and it is shared among all customers
who sit at that table. Multiple tables at multiple restaurants can serve
the same dish.

• Suppose there are Tj tables occupied before the i-th customer comes into
restaurant j and there are total K dishes has been ordered among all
restaurants in the franchise in that moment. When the i-th customer
comes into restaurant j, he can choose to sit at an occupied table or a
new table according to the following probabilities:

– Table t ≤ Tj with probability ∝ njt

α0+i−1 ,

– A new table Tj + 1 with probability ∝ α0
α0+n−1 .

In the first case, we set φji = ψjt and let tji = t for the chosen t; in the
second case, we increase Tj to Tj + 1, draw a new sample ψj,Tj

∼ G0 and
set φji = ψj,Tj

and tji = Tj . This process of customers choose tables
is essentially the same as the Chinese restaurant process, and it can be
summarized in the following conditional probability:

φji|φj1, .., φj,i−1, α0, G0 ∼
Tj∑
t=1

njt
α0 + i− 1

δψjt +
α0

α0 + i− 1
G0. (4.2)

• If he sits at an occupied table, he shares the dish that has been ordered
at that table. If he sits at a new table, he order a dish for that table

7



according to its popularity among the whole franchise, while a new dish
can also be tried, according to the following probabilities:

– dish k ≤ K t ≤ Tj with probability ∝ mk∑
k mk+γ ,

– a new dish K + 1 with probability ∝ γ∑
k mk+γ .

In the first case, we set ψjt = θk and let kjt = k for the chosen k. In the
second case, increase K to K + 1, draw a new sample θK ∼ H and set
ψjt = θK , kjt = K. This process of new table choose dishes is actually
another Chinese restaurant process, as long as we thing the table in this
step as customer and the dish in this step as table. Similarly, this step
can be summarized in the following conditional probability:

ψjt|ψ11, ψ12, .., ψj1, ..., ψj,t−1, γ,H ∼
K∑
k=1

mk∑
kmk + γ

δθk
+

γ∑
kmk + γ

H.

(4.3)

A graphical example illustrating the Chinese restaurant franchise is in Figure
5.

The Chinese restaurant franchise metaphor clearly shows the two-level clus-
ter properties: the franchise level defines the global cluster θk, and the restau-
rant level defines the local cluster ψjt. Each local cluster contains a parameter
ψjt copied from some global cluster θk, which we indicated by kjt ∼ β. Each
observation xji is associated to a parameter φji copied from some local cluster
ψjt, which we indicated by tji ∼ π̃j .

Based on these explicit assignments of observations to local clusters and local
clusters to global clusters, we can derive a HDP graphical representation based
on Chinese restaurant franchise, as in Figure 6. In the right figure in Figure 6,
parameters and variables are explicitly categorized into three groups: λ and θk
define the global clusters, γ, β and kjt are responsible for the global clusters
weights, α0, π̃j and tji are responsible for the local clusters weights. At the
global level, a global probability measure G0 ∼ DP(γ,H) is defined:

G0(θ) ∼
∞∑
k=1

βkδ(θ, θk)

β|γ ∼ GEM(γ)
θk|γ ∼ H(γ) (4.4)
kjt|β ∼ β,
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Figure 5: An example illustrating the Chinese restaurant franchise, where a
franchise menu with dish θk (global clusters, denoted by squares at center) is
shared among tables (local clusters, denoted by circles on top and bottom) in
two restaurants (groups, denoted by large rectangles). All customers seated at a
given table shared the same dish. kjt indicates the dish ordered at table ψjt, tji
indicates the table where customer φji sit. This figure is adapted from Sudderth
[1].
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(a) (b)

Figure 6: The graphical representation of HDP mixture model in the Chinese
restaurant franchise representation.
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and at the local level, group-specific mixture distribution Gj ∼ DP(α,G0) is
defined:

Gj(θ) ∼
∞∑
t=1

π̃jtδ(θ, ψjt)

π̃j |α0 = GEM(α0)
ψjt|G0 ∼ G0 (4.5)
tji|π̃j ∼ π̃j .

Compare the Gj in (3.2) and (4.5), though they both are discrete distribu-
tion, their atoms and weights are different:

• The atoms of Gj in (3.2) are global clusters θk, while the atoms of Gj in
(4.5) are local clusters ψjt.

• The atom weights in (3.2) specify the distribution of global clusters θk,
πj |α0,β ∼ DP(α0,β), while the atoms weights in (4.5) specify the distri-
bution of local clusters ψjt, π̃j |α0 = GEM(α0).

As we discussed above, ψjt is a copy from some θk which is indicated by kjt.
Thus, aggregating all ψjt whose values equal to θk in group j, we can get πjk
from π̃jt:

πjk =
∑

t|kjt=k

π̃jt. (4.6)

Compare the HDP mixture model in stick-breaking representation in Figure
3.b and the HDP mixture model in Chinese restaurant franchise representation
in Figure 6, we can find another difference between these two representations.
In stick-breaking representation, the indicator zji directly indicates the global
cluster assigned to xji, while in the Chinese restaurant franchise representation,
the global cluster is indirectly indicated via local cluster indicator tji, taking
zji = kjtji

.
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