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1 Introduction

The Neal’s review paper [4] presents three algorithms of Gibbs sampling for
Dirichlet Process Mixture Models (DPMM) when conjugate priors are used.
But he did not give technical details for these algorithms and thus it is unclear
how to use them in a practical problem for a newbie. Rasmussen’s paper [6],
Teh’s tutorial course [9] and Ranganathan’s thesis appendix [5] provide us more
technical details of these algorithms. Sudderth has a good review about the
two Gibbs sampling methods with Chinese restaurant process in the Chapter 2
of his thesis[8]. The purpose of this report is thus to combine these materials
into a self-contained tutorial for the techniques of Gibbs sampling for Dirichlet
Process Mixture Models (DPMM), especially when conjugate priors are used.

Later on, I found several papers, which are perhaps the original papers about
the algorithms described here:

� The paper by Escobar and West [1] related to Section 4.1

� The paper by West, Muller and Escobar [11] seems to be related to Section
4.2

� The paper by MacEarchern [3] seems to be related to Section 4.3

The papers [11, 3] also gives examples on normal distribution, which would
be very helpful to understand the algorithms. But I have no time to read
these papers in details. So this report is still based on Neal, Rasmussen, Teh,
Ranganathan, and Sudderth’s materials.

2 Dirichlet Process and Its Representations

G ∼ DP (α,G0) denotes a Dirichlet Process (DP) if G is a DP-distributed
random probability measure. This definition has two key points:
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� First, G is a probability measure over a subsets of a space X, which can
be loosely viewed as a generalized probability distribution;

� Second, any finite set of partitions of X, A1

⋃
...
⋃
Ak = X, we require

(G(A1),
⋃
..., G(Ak)) to be Dirichlet distributed.

Thus a DP can be viewed as a distribution of distribution. A DP has two
parameters

� Base distribution G0, which is like the mean of the DP because E[G(A)] =
G0(A);

� Strength parameter α, which is like an inverse-variance of the DP because
V[G(A)] = G0(A)(1−G0(A))

α+1 .

A DP can be represented from various schemes, as summarized in [10, 9].
They are briefly reviewed in the rest of this section.

2.1 Pólya urn scheme

The Pólya urn scheme (a.k.a. Blackwell-MacQueen urn scheme) describes a
process that produces a sequence of i.i.d. random variables φ1, φ2, ... distributing
according to G:

� Start with no balls in the urn.

� With probability ∝ α, draw φn ∼ G0, and add a ball of that color into
the urn.

� With probability ∝ n− 1, pick a ball at random from the urn, record φn
to be its color, return the ball into the urn and place a second ball of the
same color into the urn.

The process can be summarized as the following conditional distribution:

φn|φ1:n−1 ∼
αG0

α+ n− 1
+

∑n−1
j=1 δ(φn − φj)
α+ n− 1

(2.1)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. This process provides a method
to predict the new sample based on the existing samples and leads to a Gibbs
sampling method, as shown in next section.

2.2 Chinese restaurant process

The above generating process shows that the random variables φ1, ..., φn drawn
from a Pólya urn scheme have probability of being equal to one of the previous
draws. Suppose n draws of φi can take on K < n distinct values and denote
them as θ1, ..., θK . This defines a partition of 1, ..., n into K clusters. The
induced distribution over such partitions is a Chinese restaurant process, which
is described as follows:
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� Imagine a Chinese restaurant that has unlimited number of tables.

� First customer sits at the first table.

� Customer n sits at:

– Table k with probability nk

α+n−1 , where nk is the number of customers
at table k.

– A new table K + 1 with probability α
α+n−1 .

� In this metaphor, customers are analogies of integers and tables of clusters.

This process can also be summarized as follows:

p(customer n sat at table k|past n− 1 customers ) =
{ nk

α+n−1 , if occupied table;
α

α+n−1 , if new table.
(2.2)

The Chinese restaurant process illustrate the “cluster” property of the DP, i.e.,
the more customers sit at a table, the higher chance a new customer will choose
to sit at this table and most probably, and thus only a limited number of tables
will be occupied although there are unlimited number of tables in the restaurant.
This property makes it feasible for us to sample from a DP mixture, as shown
in next section.

2.3 Stick-breaking construction

Both of the above representations refer to the draws from G, while the stick-
breaking construction shows the property of G explicitly:

G(θ) =
∞∑
i=1

πkδ(θ − θk), where θk ∼ G0. (2.3)

The mixture weights {πk}∞k=1 can constructed as follows:

� Start with a unit-length stick, break the stick according to the proportion
β1 where β1 ∼ Beta(1, α), and assign β1 to π1;

� The remaining stick is broken according the proportion βk ∼ Beta(1, α),
and assign the βk portion of the remaining stick to πk.

This procedure can be summarized as follows:

βk ∼ Beta(1, α0)

πk = βk

k−1∏
l=1

(1− βl) (2.4)

The sequence π = (πk)∞k=1 satisfies
∑∞
k=1 πk = 1 with probability one and can

be writen as π ∼ GEM(α0), named after Griffiths, Engen, and McCloskey. The
stick-breaking construction reveal the discrete nature of the random measure
G.
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3 Dirichlet Process Mixture Modeling

Dirichlet process mixture model (DPMM) can be considered as an infinite ex-
tension of finite mixture model (FMM). So it is easier to understand a DPMM
by when starting from a FMM.

A FMM can be described with the graphical representation in Figure 1,
which is equivalent to the following distributions:

π|α ∼ Dir(α/K, ..., α/K) (3.1)
zi|π ∼ π (3.2)
θk|λ ∼ G0(λ) (3.3)

xi|zi, {θk}Kk=1 ∼ F (θzi) (3.4)

In this model, each datum xi is generated by first selecting one of K clusters, say,
cluster k, according to the multinomial distribution that is parameterized by π
as in (3.2), and then sampling from the distribution of this cluster F (θzi

) that
is parameterized by θk, as in (3.4). In this equation, an indicator variable zi ∈
{1, ...,K} is introduced to specify the cluster associated with xi. The mixture
weight π is given a symmetric Dirichlet prior with a hyperparameter α, as in
(3.1) and the cluster parameters θk are given a common prior distribution G0(λ)
with parameter λ, as in (3.3). In practice, F (θ) is typically some exponential
family of densities, and G0(λ) a corresponding conjugate prior.

Figure 1: Finite mixture model (left), Dirichlet process mixture model in stick-
breaking representation (right) and Dirichlet process mixture model in Pólya
urn representation (right)

Let K go to infinity, the FMM becomes a DPMM, whose graphical repre-
sentation is in Figure 1. The generating process of the DPMM is the same as
those of the FMM, except that the number of clusters is not a fixed value K.
Thus in the DPMM, the Dirichlet prior for π is replaced by a stick-breaking
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construction, π ∼ GEM(1, α) and the conditional distributions of a DPMM are:

π|α ∼ GEM(1, α)
zi|π ∼ π

θk|λ ∼ G0(λ) (3.5)
xi|zi, {θk}∞k=1 ∼ F (θzi

).

If we do not use indicator variables and explicitly present the generative
process of the cluster parameters, we can let φi = θzi

and get the DPMM in
the Pólya urn representation. The graphical representation is in Figure 1 and
its conditional probabilities are:

G|G0, α ∼ G0

φi ∼ G (3.6)
xi|φi ∼ F (φi).

The connection between the DPMM and the Chinese restaurant process
can be explicitly illustrated from the conditional distributions of the indicator
variables. In the FMM,

P (zi = k|z−i, α) =
nk,−i + α/K

n+ α− 1
, (3.7)

where z−i denotes the number of points in the k-th cluster excluding the i-th
point. The details of derivation of this result can be found in my technical
report “Derivation of Gibbs Sampling for Finite Gaussian Mixture Model”. Let
K go to infinity, the conditional distributions of the indicator variables reaches
the following limits:

for cluster k with nk,−i > 0: P (zi = k|z−i, α) =
nk,−i

n+ α− 1

for all the other clusters:P (zi 6= zj for all j 6= i|z−i, α) =
α

α+ n− 1
.(3.8)

Since the order of zi does not matter in the DPMM, we can always imagine zi
be the last one and then Equation (3.8) and (2.2) are equivalent.

4 Three Gibbs Sampling Methods for Mixture
Models

4.1 Gibbs sampling based on Pólya urn representation

In the Pólya urn representation of DPMM (3.6), the only unknown variables are
{φi}ni=1. This leads to a simple Gibbs sampling method: alternatively draw φi
from its posterior distribution conditioned on the other variables φ−i and all the
observations. To achieve this goal, we need to combine a prior of φi conditioned
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on φ−i and the likelihood for φi given the corresponding observation xi, i.e.
F (xi|φi). Such prior can be derived from (2.1) by imaging that the i is the last
one in the n observations without changing the distribution form, since all the
φi are exchangeable. Thus we have:

φi = φ|φ−i ∼
αG0(φ)

α+ n− 1
+

∑
j 6=i δ(φ− φj)
α+ n− 1

. (4.1)

Combined with the likelihood, we get the posterior of φi conditioned on φ−i:

p(φi|φ−i, xi) = bαq0H(φi|xi) + b
∑
j 6=i

F (xi|φj)δ(φi − φj)

H(φi|xi) =
G0(φi)F (xi|φi)∫
φ
G0(φ)F (xi|φ)

(4.2)

q0 =
∫
φ

G0(φ)F (xi|φ)

b =

αq0 +
∑
j 6=i

F (xi|φj)

−1

When G0 is a conjugate prior for F (xi|φi), the posterior distribution of φi,
H(φi|xi) and the marginal distribution of xi, q0, have analytical forms and the
Gibbs sampling can be easily performed.

In summary, the tasks in each iteration of this sampling method is illustrated
in Algorithm 1.

Algorithm 1 Gibbs sampling for DPMM based on the Pólya urn representation

Given {φ(t−1)
i }ni=1 from the previous iteration, sample a new set of {φ(t)

i }ni=1 as
follows:

1. For i = 1, ..., n

(a) draw a new sample for φ(t)
i from the following distribution:

φ
(t)
i ∼ bαq0H(φi|xi) + b

∑
j 6=i F (xi|φ(t−1)

j )δ(φi − φ(t−1)
j )

In the appendix of the thesis [5], Ranganathan illustrates an example for
this algorithm. In this example, xi is 1D real number, F is a univariate normal
distribution with unknown mean µ but known variance equal to unity. Thus the
φ contains only one random variable, µ. The base measure G0 is taken to be
the standard normal distribution. The model can then be described as follows:

xi|µi ∼ N (µi, 1) (4.3)
µi ∼ G(µ) (4.4)
G ∼ DP(αG0(µ)) (4.5)
G0 = N (0, 1) (4.6)
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Using the equations (4.2), we get

q0 =
∫
µ

1√
2π

exp
(
− (xi − µ)2

2

)
1√
2π

exp
(
−µ

2

2

)
=

1
2
√
π

exp
(
−x

2
i

4

)
× 1√

2π 1
2

∫
µ

exp
(
−

(µ− 1
2xi)

2

2× 1
2

)

=
1

2
√
π

exp
(
−x

2
i

4

)
and

H(µi|xi) =
1√
2π

exp
(
− (xi−µi)

2

2

)
1√
2π

exp
(
−µ

2
i

2

)
1

2
√
π

exp
(
−x

2
i

4

)
=

1√
2π × 1

4

exp
(
−

(µi − 1
2xi)

2

2× 1
4

)

= N
(

1
2
xi,

1
2

)
.

A easier way to compute the above q0 and H(µi|xi) is to start with H(µi|xi)
and use the property of conjugate prior to derive H(µi|xi) directly and then
compute q0 use H(µi|xi). Use the property of the conjugate prior of Gaussian
distribution with known variance and unknown mean

p(µ|x, σ2, µ0, σ
2
0) = N

 µ0
σ2
0

+
∑n

i=1 xi

σ2

1
σ2
0

+ n
σ2

,
1
σ2

0

+
n

σ2

 ,

and substitute µ0 = 0, σ2
0 = 1, σ2 = 1, n = 1 into the above equation, the poste-

rior H(µi|xi) is also a Gaussian with updated mean and variance: S H(µi|xi) =
N ( 1

2xi,
1
2 ). Then we get q0 = G0(µ)F (xi|µi)/H(µi|xi) = 1

2
√
π

exp
(
−x

2
i

4

)
. Fi-

nally, the Gibbs sampler becomes

P (µ(t)
i |µ

(t−1)
−i , xi) ∝ αq0H(µi|xi) +

∑
j 6=i

F (xi|µ(t−1)
j )δ(µi − µ(t−1)

j ).

In each iteration, we need to sample µi from P (µi|µ−i, xi) for i = 1, ..., n in
turn.

4.2 Gibbs sampling using latent indicator variables

Though the Gibbs sampling based on Pólya urn representation is very simple to
implement, it is very inefficient. In each iteration, we need to sample the cluster
parameter for n times and each time we only change the parameter for a single
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data point. As we know, there are usually lots of data points share the same
cluster parameter. A more efficient way is obvious to operate the data points
belonging the same cluster simultaneously. To do this, we need to employ the
DPMM in stick-breaking representation, where cluster parameters are moved
outside of the plate of xi and the indicator variables are used to identify the
cluster xi associated to.

Before discussing Gibbs sampling for DPMM, we first see the case of FMM.
In a FMM, the data points x = {xi}ni=1 are observed and the cluster indicators
z = {zi}ni=1 are latent. Thus the Gibbs sampling involves iterations that alter-
nately draw samples from one of the following variables while keeping others
fixed: the cluster indicators z = {zi}ni=1, the cluster parameters {θk}Kk=1 and
the mixture weights π. The first step towards Gibbs sampling is to derive the
conditional posterior distributions for these variables. The hyperparameter α
and λ are assumed known in this process. By exploiting the Markov properties
of the FMM and employing the Bayes rule, these distributions will be simplified
to great extents.

For each indicator variable zi, we need to derive its conditional posterior:

p(zi = k|z−i,x, π, {θk}Kk=1, α, λ)
= p(zi = k|xi, π, {θk}Kk=1) (4.7)
∝ p(zi = k|π, {θk}Kk=1)p(xi|zi = k, π, {θk}Kk=1) (4.8)
= p(zi = k|π)p(xi|θk) (4.9)
= πkF (xi|θk). (4.10)

In the above derivation, (4.7) exploits the Markov property of the FMM, (4.8)
uses the Bayes rule that posterior ∝ prior × likelihood, (4.9) uses the Markov
property and uses the definition of indicator variables.

For the mixture weight π, we need to derive its conditional posterior:

p(π|z,x, {θk}Kk=1, α, λ) = p(π|z, α) (4.11)
= Dir(n1 + α/K, ..., nK + α/K), (4.12)

where nk =
∑n
i=1 δ(zi−k). Here (4.11) results from Markov property and (4.12)

employs the property of the conjugate Dirichlet prior.
For the cluster parameters, we need to derive its conditional posterior. In

[2], it is shown that the mixture weights π and parameters {θk}Kk=1 are mutually
independent conditioning on the indicator variables z:

p(π, {θk}Kk=1|z,x, α, λ) = p(π|z, α)
K∏
k=1

p(θk|xk, λ). (4.13)

This result shows that the conditional posterior of the parameter of the k-th
cluster, θk, only depends on the observations belonging to this cluster, i.e., xk.
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Thus

p(θk|θ−k, π, z,x, α, λ) = p(θk|θ−k, z,x, λ) (4.14)
= p(θk|xk, λ) (4.15)
∝ G0(θk|λ)L(xk|θk) (4.16)

Here, (4.14) uses the Markov property, (4.15) uses the results in (4.13), and
(4.16) uses the Bayesian rule. If G(λ) is a conjugate prior of θk, the posterior
of θk will be the same form of G(λ) with parameters updated by the xi’s in xk

In summary, the tasks in each iteration of this sampling method is illustrated
in Algorithm 2.

Algorithm 2 Gibbs sampling for FMM using latent indicator variables

Given π(t−1), {θ(t−1)
k }Kk=1 from the previous iteration, sample a new set of π(t)

and {θ(t−1)
k }Kk=1 as follows:

1. For i = 1, ..., n

(a) Draw a new sample for zi from the distribution:

p(z(t)
i = k) ∝ π(t−1)

k F (xi|θ(t−1)
k )

2. Sample new mixture weight π(t) from the following distribution:

π(t) ∼ Dir(n(t)
1 + α/K, ..., n

(t)
K + α/K) n

(t)
k =

n∑
i=1

δ(z(t)
i − k)

3. For k = 1, ...,K

(a) Sample cluster parameter of each cluster, θk, from the following dis-
tribution:

θ
(t)
k ∝ G0(θk|λ)L(x(t)

k |θ
(t−1)
k )

In Algorithm 2, the mixture weight π is explicitly sampled from a Dirichlet
distribution. However, such sampling is difficult when K goes to infinite. One
option is to integrate π out. This requires us to derive zi’s conditional posterior
of zi as follows:

p(zi = k|z−i,x, {θk}Kk=1, α, λ)
= p(zi = k|z−i, xi, θk, α) (4.17)
= p(zi = k|z−i, α, θk)p(xi|zi = k, z−i, θk, α) (4.18)
= p(zi = k|z−i, α)p(xi|θk) (4.19)

=
nk,−i + α/K

n+ α− 1
F (xi|θk). (4.20)
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Here, (4.17) uses the Markov property, the property of indicator variable, and
results implied from (4.13), (4.18) uses the Bayesian rule, (4.19 ) uses the Markov
property, and (4.20) use the results in (3.7).

In summary, the tasks in each iteration of this sampling method is illustrated
in Algorithm 3.

Algorithm 3 Gibbs sampling for FMM with mixture weight integrated out

Given {θ(t−1)
k }Kk=1 and {z(t−1)

i }ni=1 from the previous iteration, sample a new
set of {θ(t−1)

k }Kk=1 and {z(t)
i }ni=1 as follows:

1. Set z = z(t−1)

2. For i = 1, ..., n

(a) Remove data item xi from the cluster zi, since we are going to sample
a new zi for xi.

(b) Draw a new sample for zi from the distribution:

p(zi = k) ∝ nk,−i + α/K

n+ α− 1
F (xi|θ(t−1)

k ) nk,−i =
∑
j 6=i

δ(zj − k)

3. For k = 1, ...,K

(a) Sample cluster parameter of each cluster, θk, from the following dis-
tribution:

θ
(t)
k ∝ G0(θk|λ)L(x(t)

k |θ
(t−1)
k )

4. Set z(t) = z

5. After the burn-in period, optionally, we can sample π(t) via Step 2 in
Algorithm 2 using {z(t)

i }ni=1.

Now we can generalize FMM to DPMM by letting K go to infinity. By
doing so, the conditional prior of zi evolves from (3.7) to (3.8). When zi is
assigned to one of the current K clusters, the conditional posterior of zi can be
obtained by replacing the conditional prior p(zi = k|z−i, α) in (4.20) by nk,−i

n+α−1 .
If zi is assigned to a new cluster index, which we denote as K + 1 without loss
generality, we need to derive zi’s conditional posterior in this case:

p(zi = K + 1|z−i,x, α, λ)
= p(zi = K + 1|z−i, xi, α, λ) (4.21)
= p(zi = K + 1|z−i, α, λ)p(xi|zi = K + 1, z−i, α, λ) (4.22)
= p(zi = K + 1|z−i, α)p(xi|λ) (4.23)

=
α

n+ α− 1

∫
F (xi|θ)G0(θ|λ)dθ. (4.24)
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Here, (4.21) uses the property of indicator variable, (4.22) uses the Bayesian
rule, (4.23 ) uses the Markov property and the property of indicator variable,
and (4.24) use the results in (3.8) and definition of marginal distribution. When
zi is assigned to a new cluster K, we should draw a new parameter φi chosen
from H(φi|xi), the posterior distribution based on the prior G0 and the single
observation xi, as defined in (4.2), assign it to the cluster parameter of this
cluster, i.e., θK+1 = φ, and increase K by 1.

Generally, DPMM is robust the concentration parameter α. However, the
number of clusters, K, is quite sensitive to α [1]. Thus, in many applications,
it is useful to choose a weakly informative prior for α, and sample from its
posterior while learning cluster parameters. If α ∼ Gamma(a, b) is assigned
a Gamma prior, its posterior is simple function of K, and samples are easily
drawn via auxiliary variable method [1]. An alternative method using Adaptive
Rejection Sampling is described in [6].

In summary, the tasks in each iteration of this sampling method is illustrated
in Algorithm 4.

In [6], this Gibbs sampling algorithm is applied to a univariate Gaussian mix-
ture. In this model, the cluster parameters includes cluster mean and precision
µ, s, the hyperparameter λ, r for the conjugate prior of µ, the hyperparameter
β,w for the conjugate prior of s, and hyperparameter α for the Dirichlet conju-
gate prior of π. Since we give conjugate priors to all the cluster parameters, the
posterior of the parameter of the k-th cluster, θk, in (4.16) and the marginal
distribution of xi, q0, in (4.2) both have analytical form. The detailed deriva-
tions can refer to my technical report “Derivation of Gibbs Sampling for Finite
Gaussian Mixture Model”.

4.3 Collapsed Gibbs sampling

When using conjugate prior, we can often integrate out the cluster parameters
θk and then we need sample zi only. This method is called as collapsed Gibbs
sampling. The justification of integrating out the cluster parameters is due
to the Rao-Blackwell Theorem [7], which states that marginalization of some
variables from a joint distribution always reduces the variance of later estimates.
The idea of this theorem can be illustrated by the following example [8].

Let p(x, z) be a joint distribution of two random variables, where x ∈ X and
z ∈ Z. Given L independent samples {x(`), z(`)}L`=1 from this joint distribution,
our goal is to estimate a statistic of f(x, z) that equals

Ep[f(x, z)] =
∫
Z

∫
X
f(x, z)p(x, z)dxdz (4.25)

≈ 1
L

L∑
`=1

f(x(`), z(`)) = Ep̃[f(x, z)] (4.26)

Sometimes, the conditional density p(x|z) has a tractable analytic form. In
this case, we can consider to sample L independent samples {z(`)}L`=1 from the
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Algorithm 4 Direct Gibbs sampling for DPMM

Given α(t−1), {θ(t−1)
k }Kk=1 and {z(t−1)

i }ni=1 from the previous iteration, sample
a new set of {θ(t−1)

k }Kk=1 and {z(t)
i }ni=1 as follows:

1. Set z = z(t−1), α = α(t−1)

2. For i = 1, ..., n

(a) Remove data item xi from the cluster zi, since we are going to sample
a new zi for xi.

(b) If xi is the only data in its current cluster, this cluster becomes
empty after Step (2.a). This cluster is then removed, together with
its parameter, and K is decreased by 1.

(c) Re-arrange cluster indices so that 1, ...,K are active (i.e., non-empty)

(d) Draw a new sample for zi from the following probabilities:

p(zi = k, k ≤ K) ∝ nk,−i
n+ α− 1

F (xi|θ(t−1)
k ) nk,−i =

∑
j 6=i

δ(zj − k)

p(zi = K + 1) ∝ α

n+ α− 1

∫
F (xi|θ)G0(θ)dθ

(e) If zi = K + 1, we get a new cluster. Index this cluster as K + 1,
sample a new cluster parameter φi from H(φi|xi) defined in (4.2),
assign it to θK+1, and increase K by 1

3. For k = 1, ...,K

(a) Sample cluster parameter of each cluster, θk, from the following dis-
tribution:

θ
(t)
k ∝ G0(θk|λ)L(x(t)

k |θ
(t−1)
k )

4. Set z(t) = z

5. If α ∼ Gamma(a, b), sample α(t) ∼ p(α|K,n, a, b) via auxiliary variable
method [1].
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marginal distribution p(z) to replace the samples from the joint distribution:

Ep[f(x, z)] =
∫
Z

∫
X
f(x, z)p(x|z)p(z)dxdz (4.27)

=
∫
Z

[∫
X
f(x, z)p(x|z)dx

]
p(z)dz (4.28)

≈ 1
L

L∑
`=1

f(x, z(`))p(x|z(`))dx = Ep̃[Ep[f(x, z)|z]] (4.29)

Both estimators are unbiased and converge to Ep[f(x, z)] almost surely as L→
∞. However, with the Rao-Blackwell Theorem, we know that the latter one has
lower variance. Also intuitively, the underlying sample space of the marginalized
estimator is Z, which is smaller than the sample space of the original estimator
X×Z, thus the marginalized estimator should be more reliable (better accuracy)
and converge faster (better efficiency). Especially we can often integrate out
the model parameters in a hierarchical Bayes model by using conjugate prior,
which makes the marginalized estimator feasible. Furthermore, the variance
reduction guaranteed by the Rao-Blackwell theorem. All these reasons justify
the collapsed Gibbs sampler.

Consider the FMM, assume F (xi|θk) belongs to an exponential family and
G0(θk|λ) is a conjugate prior for θk. Integrating out π and {θk}Kk=1 means we
need to draw samples from p(zi|z−i,x, α, λ). Factorize this distribution, we
have:

p(zi = k|z−i,x, α, λ)
= p(zi = k|xi, z−i,x−i, α, λ) (4.30)
∝ p(zi = k|z−i,x−i, α, λ)p(xi|zi = k, z−i,x−i, α, λ) (4.31)
= p(zi = k|z−i, α)p(xi|xk,−i, λ) (4.32)

Here we use the Bayesian rule in (4.31) and apply the Markov property of the
FMM graphical model in (4.32). The first term in (4.32) is due to the marginal-
ization of π, whose details can be found in my technical report “Derivation of
Gibbs Sampling for Finite Gaussian Mixture Model”. The result of this term
has been given by (3.7). The second term in (4.32) can be considered as a
predictive likelihood of xi given xk,−i, i.e., the other data currently assigned
to cluster k. It is due to the marginalization of θk, as we will see next. This
distribution has analytic forms if F (xi|θk) belongs to an exponential family and
G0(θk|λ) is a conjugate prior for θk. The derivations are as follows.

An exponential family of distribution is parameterized as:

p(x|θ) = exp
(
t(θ)T s(x)− φ(x)− ψ(θ)

)
, (4.33)

where s(x) is the sufficient statistics vector, t(θ) the natural parameter vector,
ψ(θ) is the log normalization quantity. The conjugate prior of θ is an exponential
family distribution over θ with hyperparameter ν and η:

p(θ|ν, η) = exp
(
t(θ)T ν − ηψ(θ)− ξ(ν, η)

)
. (4.34)

13



The posterior given observation x = {xj}Kj=1 is in the same form of p(θ) with
updated hyperparameter ν̃ = ν +

∑
i s(xi) and η̃ = η + n:

p(θ|x, ν, η)

= exp

t(θ)T (ν +
∑
j

s(xj))− (η + n)ψ(θ)− ξ(ν +
∑
i

s(xj), η + n)


= p(θ|ν̃, η̃). (4.35)

The marginal probability can be obtained by simply apply the Bayes rule:

p(x) =
p(θ)p(x|θ)
p(θ|x)

= exp

ξ(ν +
∑
j

s(xj), η + n)− ξ(ν, η)−
∑
j

φ(xj)

 . (4.36)

Now go back to the predictive likelihood of xi. This distribution can be
obtained by marginalizing θk:

p(xi|xk,−i, λ) =
∫
p(xi|θk)p(θk|xk,−i, λ)dθk. (4.37)

This integration can be obtained directly by applying the results in (4.35) and
(4.36). First, p(θk|xk,−i, λ) is the posterior of θk after observing the data xk,−i,
where θk is given a conjugate prior parameterized by λ = (ν, η), use (4.35) we
get:

p(θk|xk,−i, ν, η) = p(θk|ν̃, η̃), (4.38)

where ν̃ = ν +
∑

xk,−i
s(xj) and η̃ = η + nk,−i. Second, we take (4.38) as a

new prior of θ with hyperparameter ν̃ and η̃, and xi as the observation. Notice
p(x) =

∫
p(x|θ)p(θ)dθ, thus (4.37) is actually the marginal probability of xi

with the new prior of θk as in (4.38). Use the result in (4.36) and get

p(xi|xk, λ)
= exp (ξ(ν̃ + s(xi), η̃ + 1)− ξ(ν̃, η̃)− φ(xi))

= exp

ξ(ν +
∑
xk,−i

s(xj) + s(xi), η + nk,−i + 1)− ξ(ν +
∑
xk,−i

s(xj), η + nk,−i)− φ(xi)


≡ fk(xi;Sk, nk), (4.39)

where Sk ≡ {s(xj)}xk
is the set of sufficient statistics for data in xk, and

fk(xi;Sk, nk) is defined as the predictive likelihood of xi based on the observa-
tions in xk,−i. Notice that in case we need Sk,−i ≡ {s(xj)}xk,−i

, Sk,−i can be
routinely obtained by excluding s(xi) from Sk. Similarly, nk,−i = nk− 1 can be
used when we need nk,−i.
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Substitute the results in (4.39) and (3.7) into (4.32), we get

p(zi = k|z(−i),x, α, λ) =
nk,−i + α/K

n+ α− 1
× fk(xi;Sk, nk) (4.40)

We notice that all the information we need to compute (4.40) is the number and
sufficient statistics of data points in each cluster, i.e., nk and Sk. So we only
need to update these values when a new sample of zi is drawn.

In summary, the collapsed Gibbs sampling for FMM as illustrated in Algo-
rithm (5).

Algorithm 5 Collapsed Gibbs sampling for FMM

Given {z(t−1)
i }ni=1 from the previous iteration, sample a new set of {z(t)

i }ni=1 as
follows:

1. Sample a random permutation τ(·) of the integers {1,...,n }.

2. Set z = z(t−1)

3. For i ∈ τ(1), ..., τ(n)

(a) Remove data item xi from the cluster zi, since we are going to sample
a new zi for xi. This is done by updating Szi

and nzi
.

(b) For each of the K clusters, compute the predictive likelihood
fk(xi;Sk, nk) using the information in {Sk}Kk=1 and {nk}Kk=1.

(c) Draw a new sample for zi from the following multinomial probabili-
ties:

p(zi = k) ∝ nk,−i + α/K

n+ α− 1
fk(xi;Sk, nk)

(d) Update {Sk}Kk=1 and {nk}Kk=1 to reflect the new value of zi

4. Set z(t) = z

5. After the burn-in period, optionally, we can draw samples for π(t) and
{θ(t)k }Kk=1 via Step 2 and 3 in Algorithm 2 respectively.

Similar to Algorithm 4, we can generalize FMM to DPMM by letting K go
to infinity. By doing so, the conditional prior of zi evolves from (3.7) to (3.8).
When zi is assigned to one of the current K clusters, the conditional posterior of
zi can be obtained by replacing the conditional prior p(zi = k|z−i, α) in (4.32)
by nk,−i

n+α−1 , and consequently the term nk,−i+α/K
n+α−1 in (4.40) is then replaced by

nk,−i

n+α−1 . If zi is assigned to a new cluster index, which we denote as K+1 without
loss generality, zi’s conditional posterior in this case is the same as (4.24).

In summary, the collapsed Gibbs sampling for DPMM as illustrated in Al-
gorithm (6).
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Algorithm 6 Collapsed Gibbs sampling for DPMM

Given α(t−1) and {z(t−1)
i }ni=1 from the previous iteration, sample a new set of

{z(t)
i }ni=1 as follows:

1. Sample a random permutation τ(·) of the integers {1,...,n }.

2. Set z = z(t−1), α = α(t−1)

3. For i ∈ τ(1), ..., τ(n)

(a) Remove data item xi from the cluster zi, since we are going to sample
a new zi for xi. This is done by updating Szi and nzi .

(b) If xi is the only data in its current cluster, this cluster becomes
empty after Step (3.a). This cluster is then removed, together with its
parameter. This is done by updating Szi

and nzi
, and K is decreased

by 1.

(c) Re-arrange cluster indices so that 1, ...,K are active (i.e., non-empty)

(d) For each of the K active clusters, compute the predictive likelihood
fk(xi;Sk, nk) using the information in {Sk}Kk=1 and {nk}Kk=1 as in
(4.39). Also compute the predictive likelihood of the potential new
cluster fK+1(xi) ≡

∫
F (xi|θ)G0(θ)dθ.

(e) Draw a new sample for zi from the following (K+1) multinomial
probabilities:

p(zi = k, k ≤ K) ∝ nk,−i
n+ α− 1

fk(xi;Sk, nk)

p(zi = K + 1) ∝ α

n+ α− 1
fK+1(xi).

(f) If zi = K + 1, we get a new cluster. Index this cluster as K + 1,
sample a new cluster parameter φi from H(φi|xi) as defined in (4.2),
assign it to θK+1, and increase K by 1

(g) Update {Sk}Kk=1 and {nk}Kk=1 to reflect the new value of zi

4. Set z(t) = z

5. After the burn-in period, optionally, we can draw samples for {θ(t)k }Kk=1

via Step 3 in Algorithm 2.

6. If α ∼ Gamma(a, b), sample α(t) ∼ p(α|K,n, a, b) via auxiliary variable
method [1].
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