# Important properties regarding matrix inversions

Posted 2014. 11. 4. 22:53

Following properties about matrix inversion is extermely important in deriving derivatives in parameter estimation.

$$\frac{\partial}{\partial \theta} K^{-1} = K^{-1} \frac{\partial K}{\partial \theta} K^{-1}$$

where '$\frac{\partial K}{\partial \theta}$' is a matrix of elementwise derivatives.

2. Gradient of Log-Determinent of a Matrix

$$\frac{\partial}{\partial \theta} log |K| = tr(K^{-1} \frac{\partial K}{\partial \theta})$$

3. Computing the inverse of submatrix given the inverse of the Matrix

Let

$$[\mathbf{A} ~ \mathbf{b} ~ ; ~ \mathbf{c}^T ~ d]^{-1} = [\mathbf{E} ~ \mathbf{f} ~ ; ~ \mathbf{g}^T ~ h]$$

then,

$$\mathbf{A}^{-1} = \mathbf{E} - \frac{\mathbf{f}^T \mathbf{g} }{h}$$

*Why? (http://math.stackexchange.com/questions/208001/are-there-any-decompositions-of-a-symmetric-matrix-that-allow-for-the-inversion/208021#208021)

In particular, above-mentioned property can be applied to leave-one-out (LOO) parameter optimizations.

Let

$$\mathbf{K}_{\mathbf{XX}} = [\mathbf{K}_{\mathbf{X}_{i-1} \mathbf{X}_{i-1}} ~ \mathbf{k}(\mathbf{X}_{-i}, \mathbf{x}_{i}) ~ ; ~ \mathbf{k}(\mathbf{X}_{-i}, \mathbf{x}_{i})^T ~ k(\mathbf{x}_i, \mathbf{x}_i) ]$$

and

$$\mathbf{K}_{\mathbf{XX}}^{-1} = [\mathbf{E} ~ \mathbf{f} ~;~ \mathbf{g}^T ; h]$$

where

$$\mathbf{K}_{\mathbf{X}_{i-1} \mathbf{X}_{i-1}} = \mathbf{k}(\mathbf{X}_{i-1}, \mathbf{X}_{i-1}).$$

Then

$$\mathbf{K}_{\mathbf{X}_{i-1} \mathbf{X}_{i-1}} ^ {-1} = \mathbf{E} - \frac{\mathbf{f}^T \mathbf{g}}{h}$$

which states

$$K_{X_{1:n-i}X_{1:n-i}}^{-1} = V_{1:n-i, ~1:n-i} - \frac{V_{1:n-i,~i}^T V_{i:n-i, ~i}}{V_{i, ~i}}$$

where '$V = K_{X_{1:n}X_{1:n}}^{-1}.$'

#### 'Enginius > Machine Learning' 카테고리의 다른 글

 Topologoical Data Analysis  (0) 2014.11.21 2014.11.12 2014.11.04 2014.10.29 2014.10.28 2014.10.21