FROM nvidia/cuda:7.5-cudnn5-devel
MAINTAINER Craig Citro <craigcitro@google.com>
# Pick up some TF dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
curl \
git \
swig \
libcurl3-dev \
libfreetype6-dev \
libpng12-dev \
libzmq3-dev \
libtiff5-dev libjpeg8-dev \
liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk \
pkg-config \
python \
python-dev \
rsync \
software-properties-common \
unzip \
zip \
zlib1g-dev \
&& \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py
RUN pip --no-cache-dir install \
ipykernel \
jupyter \
Pillow \
matplotlib \
numpy \
scipy \
sklearn \
&& \
python -m ipykernel.kernelspec
# Set up Bazel.
# We need to add a custom PPA to pick up JDK8, since trusty doesn't
# have an openjdk8 backport. openjdk-r is maintained by a reliable contributor:
# Matthias Klose (https://launchpad.net/~doko). It will do until
# we either update the base image beyond 14.04 or openjdk-8 is
# finally backported to trusty; see e.g.
# https://bugs.launchpad.net/trusty-backports/+bug/1368094
RUN add-apt-repository -y ppa:openjdk-r/ppa && \
apt-get update && \
apt-get install -y --no-install-recommends openjdk-8-jdk openjdk-8-jre-headless && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Running bazel inside a `docker build` command causes trouble, cf:
# https://github.com/bazelbuild/bazel/issues/134
# The easiest solution is to set up a bazelrc file forcing --batch.
RUN echo "startup --batch" >>/root/.bazelrc
# Similarly, we need to workaround sandboxing issues:
# https://github.com/bazelbuild/bazel/issues/418
RUN echo "build --spawn_strategy=standalone --genrule_strategy=standalone" \
>>/root/.bazelrc
ENV BAZELRC /root/.bazelrc
# Install the most recent bazel release.
ENV BAZEL_VERSION 0.3.2
WORKDIR /
RUN mkdir /bazel && \
cd /bazel && \
curl -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
curl -fSsL -o /bazel/LICENSE.txt https://raw.githubusercontent.com/bazelbuild/bazel/master/LICENSE.txt && \
chmod +x bazel-*.sh && \
./bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
cd / && \
rm -f /bazel/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh
# Download and build TensorFlow.
RUN git clone https://github.com/tensorflow/tensorflow.git && \
cd tensorflow && \
git checkout r0.11
WORKDIR /tensorflow
# Configure the build for our CUDA configuration.
ENV CUDA_PATH /usr/local/cuda
ENV LD_LIBRARY_PATH /usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
# /usr/lib/x86_64-linux-gnu:
ENV CUDA_TOOLKIT_PATH /usr/local/cuda
ENV CUDNN_INSTALL_PATH /usr/lib/x86_64-linux-gnu
ENV TF_NEED_CUDA 1
ENV TF_CUDA_COMPUTE_CAPABILITIES=3.0,3.5,5.2
RUN tensorflow/tools/ci_build/builds/configured GPU \
bazel build -c opt --config=cuda tensorflow/tools/pip_package:build_pip_package && \
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/pip && \
pip install --upgrade /tmp/pip/tensorflow-*.whl && \
rm -rf /tmp/pip && \
rm -rf /root/.cache
# Clean up pip wheel and Bazel cache when done.
# Set up our notebook config.
COPY jupyter_notebook_config.py /root/.jupyter/
# Copy sample notebooks.
# COPY notebooks /notebooks
# Jupyter has issues with being run directly:
# https://github.com/ipython/ipython/issues/7062
# We just add a little wrapper script.
COPY run_jupyter.sh /
# MY MODIFICATION
RUN sed 's/main$/main universe/' -i /etc/apt/sources.list && \
apt-get update && apt-get install -y software-properties-common && \
add-apt-repository ppa:webupd8team/java -y && \
apt-get update && \
echo oracle-java8-installer shared/accepted-oracle-license-v1-1 select true | /usr/bin/debconf-set-selections && \
apt-get install -y oracle-java8-installer libxext-dev libxrender-dev libxtst-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
rm -rf /tmp/*
RUN adduser -uid 1005 -gid 100 chang
RUN usermod -aG sudo chang
RUN cp /root/.bashrc /home/chang
RUN chown chang:users /home/chang/.bashrc
USER chang
RUN echo "\n# FOR CUDA AND cudnn\n" >> /home/chang/.bashrc
RUN echo "export LD_LIBRARY_PATH="/usr/local/nvidia/lib:/usr/local/nvidia/lib64:$LD_LIBRARY_PATH"" >> /home/chang/.bashrc
RUN echo "export PATH="/usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH"" >> /home/chang/.bashrc
# COPY jupyter_notebook_config.py /home/chang/.jupyter/
# COPY run_jupyter.sh /home/chang
# TensorBoard
EXPOSE 6006
# IPython
EXPOSE 8888
WORKDIR "/home/chang/notebooks"
USER root
# CMD ["/run_jupyter.sh"]