Back-propagation in neural network (aka delta rule)
The main intuition is to define a delta
$$ \delta_k^l \equiv \frac{C}{z_k^l} $$
and find a recursive backward rule
$$ \delta^l_k = \sum_m ( \delta_m^{l+1} W_{mk}^{l+1} ) \sigma'(z^l_k). $$
The gradients w.r.t. the learning parameters can be computed from the deltas.
Gradients of a convolution layer
The gradients of a convolution operation can be computed by convolution with the gradient of a loss function w.r.t. the activation and the rotated convolutional feature map.
'Enginius > Machine Learning' 카테고리의 다른 글
Recent papers regarding robust learning with noisy labels (0) | 2018.03.26 |
---|---|
Causalty란 무엇일까? (0) | 2017.12.30 |
Deconvolution and Checkerboard Artifacts (0) | 2017.12.22 |
CapsNet (0) | 2017.12.19 |
NIPS 2017 - Interpretable ML workshop (0) | 2017.12.19 |